These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 17126884

  • 1. WO3 thin films for photoelectrochemical purification of water.
    Waldner G, Brüger A, Gaikwad NS, Neumann-Spallart M.
    Chemosphere; 2007 Mar; 67(4):779-84. PubMed ID: 17126884
    [Abstract] [Full Text] [Related]

  • 2. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.
    de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K.
    J Phys Chem B; 2006 Dec 21; 110(50):25347-55. PubMed ID: 17165981
    [Abstract] [Full Text] [Related]

  • 3. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M.
    Phys Chem Chem Phys; 2008 Nov 07; 10(41):6258-65. PubMed ID: 18936850
    [Abstract] [Full Text] [Related]

  • 4. Enhanced photoelectrocatalytic performance of Zn-doped WO(3) photocatalysts for nitrite ions degradation under visible light.
    Cheng XF, Leng WH, Liu DP, Zhang JQ, Cao CN.
    Chemosphere; 2007 Aug 07; 68(10):1976-84. PubMed ID: 17482660
    [Abstract] [Full Text] [Related]

  • 5. The effect of background irradiation on photocatalytic efficiencies of TiO2 thin films.
    Cen J, Li X, He M, Zheng S, Feng M.
    Chemosphere; 2006 Feb 07; 62(5):810-6. PubMed ID: 16019055
    [Abstract] [Full Text] [Related]

  • 6. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A, Kuykendall TR, Chen W, Chen S, Zhang JZ.
    J Phys Chem B; 2006 Dec 21; 110(50):25288-96. PubMed ID: 17165974
    [Abstract] [Full Text] [Related]

  • 7. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.
    Oliveira HG, Ferreira LH, Bertazzoli R, Longo C.
    Water Res; 2015 Apr 01; 72():305-14. PubMed ID: 25238917
    [Abstract] [Full Text] [Related]

  • 8. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.
    Zhu T, Chong MN, Chan ES.
    ChemSusChem; 2014 Nov 01; 7(11):2974-97. PubMed ID: 25274424
    [Abstract] [Full Text] [Related]

  • 9. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.
    Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, Choi KS, Stucky GD, McFarland EW.
    J Comb Chem; 2005 Nov 01; 7(2):264-71. PubMed ID: 15762755
    [Abstract] [Full Text] [Related]

  • 10. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO3 semiconductor catalyst.
    Qamar M, Gondal MA, Hayat K, Yamani ZH, Al-Hooshani K.
    J Hazard Mater; 2009 Oct 30; 170(2-3):584-9. PubMed ID: 19540669
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light.
    Kim J, Lee CW, Choi W.
    Environ Sci Technol; 2010 Sep 01; 44(17):6849-54. PubMed ID: 20698551
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mesoporous films of TiO(2) as efficient photocatalysts for the purification of water.
    Rathouský J, Kalousek V, Kolář M, Jirkovský J.
    Photochem Photobiol Sci; 2011 Mar 02; 10(3):419-24. PubMed ID: 20976315
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid.
    Monllor-Satoca D, Borja L, Rodes A, Gómez R, Salvador P.
    Chemphyschem; 2006 Dec 11; 7(12):2540-51. PubMed ID: 17072939
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes.
    Waldner G, Pourmodjib M, Bauer R, Neumann-Spallart M.
    Chemosphere; 2003 Mar 11; 50(8):989-98. PubMed ID: 12531704
    [Abstract] [Full Text] [Related]

  • 19. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid.
    Wang Y, Zhang P.
    J Hazard Mater; 2011 Sep 15; 192(3):1869-75. PubMed ID: 21803489
    [Abstract] [Full Text] [Related]

  • 20. Improving Photoelectrochemical Properties of Anodic WO3 Layers by Optimizing Electrosynthesis Conditions.
    Zych M, Syrek K, Zaraska L, Sulka GD.
    Molecules; 2020 Jun 25; 25(12):. PubMed ID: 32630395
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.