These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
518 related items for PubMed ID: 17129092
1. Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory. Krykunov M, Kundrat MD, Autschbach J. J Chem Phys; 2006 Nov 21; 125(19):194110. PubMed ID: 17129092 [Abstract] [Full Text] [Related]
2. Time dependent density functional theory modeling of specific rotation and optical rotatory dispersion of the aromatic amino acids in solution. Kundrat MD, Autschbach J. J Phys Chem A; 2006 Nov 30; 110(47):12908-17. PubMed ID: 17125308 [Abstract] [Full Text] [Related]
3. Fast generation of nonresonant and resonant optical rotatory dispersion curves with the help of circular dichroism calculations and Kramers-Kronig transformations. Rudolph M, Autschbach J. Chirality; 2008 Sep 30; 20(9):995-1008. PubMed ID: 18335484 [Abstract] [Full Text] [Related]
4. Kramers-Kronig transformation for optical rotatory dispersion studies. Polavarapu PL. J Phys Chem A; 2005 Aug 18; 109(32):7013-23. PubMed ID: 16834064 [Abstract] [Full Text] [Related]
5. Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism, and optical rotation: the iridoids plumericin and isoplumericin. Stephens PJ, Pan JJ, Devlin FJ, Krohn K, Kurtán T. J Org Chem; 2007 Apr 27; 72(9):3521-36. PubMed ID: 17388636 [Abstract] [Full Text] [Related]
6. Calculation of optical rotatory dispersion and electronic circular dichroism for tris-bidentate groups 8 and 9 metal complexes, with emphasis on exciton coupling. Rudolph M, Autschbach J. J Phys Chem A; 2011 Mar 31; 115(12):2635-49. PubMed ID: 21375228 [Abstract] [Full Text] [Related]
7. Observation and calculation of vibrational circular birefringence: a new form of vibrational optical activity. Lombardi RA, Nafie LA. Chirality; 2009 Mar 31; 21 Suppl 1():E277-86. PubMed ID: 20034018 [Abstract] [Full Text] [Related]
8. Absolute configuration of C76 from optical rotatory dispersion. Polavarapu PL, He J, Crassous J, Ruud K. Chemphyschem; 2005 Dec 09; 6(12):2535-40. PubMed ID: 16270369 [Abstract] [Full Text] [Related]
9. Kramers-Kronig transformation of experimental electronic circular dichroism: application to the analysis of optical rotatory dispersion in dimethyl-L-tartrate. Polavarapu PL, Petrovic AG, Zhang P. Chirality; 2006 Sep 09; 18(9):723-32. PubMed ID: 16856171 [Abstract] [Full Text] [Related]
10. Study on the absolute configuration of levetiracetam via density functional theory calculations of electronic circular dichroism and optical rotatory dispersion. Li L, Si YK. J Pharm Biomed Anal; 2011 Nov 01; 56(3):465-70. PubMed ID: 21794998 [Abstract] [Full Text] [Related]
11. Calculation of the magnetic circular dichroism B term from the imaginary part of the Verdet constant using damped time-dependent density functional theory. Krykunov M, Seth M, Ziegler T, Autschbach J. J Chem Phys; 2007 Dec 28; 127(24):244102. PubMed ID: 18163665 [Abstract] [Full Text] [Related]
12. Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. Norman P, Ruud K, Helgaker T. J Chem Phys; 2004 Mar 15; 120(11):5027-35. PubMed ID: 15267368 [Abstract] [Full Text] [Related]
14. Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules. Autschbach J, Nitsch-Velasquez L, Rudolph M. Top Curr Chem; 2011 Dec 29; 298():1-98. PubMed ID: 21321799 [Abstract] [Full Text] [Related]
15. Computing chiroptical properties with first-principles theoretical methods: background and illustrative examples. Autschbach J. Chirality; 2009 Dec 29; 21 Suppl 1():E116-52. PubMed ID: 20014411 [Abstract] [Full Text] [Related]
16. Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules. Autschbach J, Jensen L, Schatz GC, Tse YC, Krykunov M. J Phys Chem A; 2006 Feb 23; 110(7):2461-73. PubMed ID: 16480306 [Abstract] [Full Text] [Related]
17. Calculations of vibrationally resonant sum- and difference-frequency-generation spectra of chiral molecules in solutions: three-wave-mixing vibrational optical activity. Choi JH, Cheon S, Cho M. J Chem Phys; 2010 Feb 21; 132(7):074506. PubMed ID: 20170236 [Abstract] [Full Text] [Related]
18. Time dependent density functional theory modeling of chiroptical properties of small amino acids in solution. Kundrat MD, Autschbach J. J Phys Chem A; 2006 Mar 23; 110(11):4115-23. PubMed ID: 16539437 [Abstract] [Full Text] [Related]
19. Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules. Crawford TD, Stephens PJ. J Phys Chem A; 2008 Feb 14; 112(6):1339-45. PubMed ID: 18198852 [Abstract] [Full Text] [Related]
20. Femtosecond spectral interferometry of optical activity: theory. Rhee H, Ha JH, Jeon SJ, Cho M. J Chem Phys; 2008 Sep 07; 129(9):094507. PubMed ID: 19044877 [Abstract] [Full Text] [Related] Page: [Next] [New Search]