These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 17130820
1. 4-Hydroxyproline metabolism and glyoxylate production: A target for substrate depletion in primary hyperoxaluria? Coulter-Mackie MB. Kidney Int; 2006 Dec; 70(11):1891-3. PubMed ID: 17130820 [Abstract] [Full Text] [Related]
3. Primary hyperoxaluria type III--a model for studying perturbations in glyoxylate metabolism. Belostotsky R, Pitt JJ, Frishberg Y. J Mol Med (Berl); 2012 Dec; 90(12):1497-504. PubMed ID: 22729392 [Abstract] [Full Text] [Related]
4. The effects of the inactivation of Hydroxyproline dehydrogenase on urinary oxalate and glycolate excretion in mouse models of primary hyperoxaluria. Buchalski B, Wood KD, Challa A, Fargue S, Holmes RP, Lowther WT, Knight J. Biochim Biophys Acta Mol Basis Dis; 2020 Mar 01; 1866(3):165633. PubMed ID: 31821850 [Abstract] [Full Text] [Related]
5. Primary hyperoxalurias: disorders of glyoxylate detoxification. Salido E, Pey AL, Rodriguez R, Lorenzo V. Biochim Biophys Acta; 2012 Sep 01; 1822(9):1453-64. PubMed ID: 22446032 [Abstract] [Full Text] [Related]
6. [Primary hyperoxaluria]. De Pauw L, Toussaint C. Rev Med Brux; 1996 Apr 01; 17(2):67-74. PubMed ID: 8685551 [Abstract] [Full Text] [Related]
7. Oxalate synthesis in mammals: properties and subcellular distribution of serine:pyruvate/alanine:glyoxylate aminotransferase in the liver. Ichiyama A, Xue HH, Oda T, Uchida C, Sugiyama T, Maeda-Nakai E, Sato K, Nagai E, Watanabe S, Takayama T. Mol Urol; 2000 Apr 01; 4(4):333-40. PubMed ID: 11156700 [Abstract] [Full Text] [Related]
8. Metabolism of (13)C5-hydroxyproline in mouse models of Primary Hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase. Li X, Knight J, Fargue S, Buchalski B, Guan Z, Inscho EW, Liebow A, Fitzgerald K, Querbes W, Todd Lowther W, Holmes RP. Biochim Biophys Acta; 2016 Feb 01; 1862(2):233-9. PubMed ID: 26655602 [Abstract] [Full Text] [Related]
9. Development and Validation of a New Gas Chromatography-Tandem Mass Spectrometry Method for the Measurement of Enrichment of Glyoxylate Metabolism Analytes in Hyperoxaluria Patients Using a Stable Isotope Procedure. van Harskamp D, Garrelfs SF, Oosterveld MJS, Groothoff JW, van Goudoever JB, Schierbeek H. Anal Chem; 2020 Jan 21; 92(2):1826-1832. PubMed ID: 31867958 [Abstract] [Full Text] [Related]
10. Control of oxalate formation from L-hydroxyproline in liver mitochondria. Takayama T, Fujita K, Suzuki K, Sakaguchi M, Fujie M, Nagai E, Watanabe S, Ichiyama A, Ogawa Y. J Am Soc Nephrol; 2003 Apr 21; 14(4):939-46. PubMed ID: 12660328 [Abstract] [Full Text] [Related]
12. Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria. Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, Diwanji R, Dutta C, Koser M, Nazef N, Storr R, Kim B, Martin-Higueras C, Salido E, Wang W, Abrams M, Dudek H, Brown BD. Mol Ther; 2018 Aug 01; 26(8):1983-1995. PubMed ID: 29914758 [Abstract] [Full Text] [Related]
13. Catabolism of Hydroxyproline in Vertebrates: Physiology, Evolution, Genetic Diseases and New siRNA Approach for Treatment. Belostotsky R, Frishberg Y. Int J Mol Sci; 2022 Jan 17; 23(2):. PubMed ID: 35055190 [Abstract] [Full Text] [Related]
14. A molecular journey on the pathogenesis of primary hyperoxaluria. Cellini B. Curr Opin Nephrol Hypertens; 2024 Jul 01; 33(4):398-404. PubMed ID: 38602143 [Abstract] [Full Text] [Related]
15. The subcellular metabolism of glyoxylate in primary hyperoxaluria type 1: the relationship between glycine production and oxalate overproduction. Thompson GN, Purkiss P, Danpure CJ. J Inherit Metab Dis; 1988 Jul 01; 11 Suppl 2():212-4. PubMed ID: 2903269 [No Abstract] [Full Text] [Related]
16. Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells. Schnedler N, Burckhardt G, Burckhardt BC. J Hepatol; 2011 Mar 01; 54(3):513-20. PubMed ID: 21093948 [Abstract] [Full Text] [Related]
17. Dietary intake, absorption, metabolism, and excretion of oxalate. Williams AW, Wilson DM. Semin Nephrol; 1990 Jan 01; 10(1):2-8. PubMed ID: 2404326 [No Abstract] [Full Text] [Related]
18. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Knight J, Jiang J, Assimos DG, Holmes RP. Kidney Int; 2006 Dec 01; 70(11):1929-34. PubMed ID: 17021603 [Abstract] [Full Text] [Related]
19. Glycolate and glyoxylate metabolism in HepG2 cells. Baker PR, Cramer SD, Kennedy M, Assimos DG, Holmes RP. Am J Physiol Cell Physiol; 2004 Nov 01; 287(5):C1359-65. PubMed ID: 15240345 [Abstract] [Full Text] [Related]
20. Hydroxyproline metabolism in mouse models of primary hyperoxaluria. Knight J, Holmes RP, Cramer SD, Takayama T, Salido E. Am J Physiol Renal Physiol; 2012 Mar 15; 302(6):F688-93. PubMed ID: 22189945 [Abstract] [Full Text] [Related] Page: [Next] [New Search]