These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 17132143

  • 1. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation.
    Novo M, Beltran G, Rozes N, Guillamon JM, Sokol S, Leberre V, François J, Mas A.
    FEMS Yeast Res; 2007 Mar; 7(2):304-16. PubMed ID: 17132143
    [Abstract] [Full Text] [Related]

  • 2. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 3. Analysis of the genomic response of a wine yeast to rehydration and inoculation.
    Rossignol T, Postaire O, Storaï J, Blondin B.
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):699-712. PubMed ID: 16607525
    [Abstract] [Full Text] [Related]

  • 4. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 5. Application of real-time RT-PCR to study gene expression in active dry yeast (ADY) during the rehydration phase.
    Vaudano E, Costantini A, Cersosimo M, Del Prete V, Garcia-Moruno E.
    Int J Food Microbiol; 2009 Jan 31; 129(1):30-6. PubMed ID: 19062120
    [Abstract] [Full Text] [Related]

  • 6. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A, del Olmo ML.
    FEMS Yeast Res; 2004 May 31; 4(7):699-710. PubMed ID: 15093773
    [Abstract] [Full Text] [Related]

  • 7. An RT-qPCR approach to study the expression of genes responsible for sugar assimilation during rehydration of active dry yeast.
    Vaudano E, Costantini A, Noti O, Garcia-Moruno E.
    Food Microbiol; 2010 Sep 31; 27(6):802-8. PubMed ID: 20630323
    [Abstract] [Full Text] [Related]

  • 8. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C, Cárdenas J, Melo F, Agosin E.
    Yeast; 2005 Apr 15; 22(5):369-83. PubMed ID: 15806604
    [Abstract] [Full Text] [Related]

  • 9. Vitality enhancement of the rehydrated active dry wine yeast.
    Rodríguez-Porrata B, Novo M, Guillamón J, Rozès N, Mas A, Otero RC.
    Int J Food Microbiol; 2008 Aug 15; 126(1-2):116-22. PubMed ID: 18619697
    [Abstract] [Full Text] [Related]

  • 10. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
    Appl Microbiol Biotechnol; 2006 Apr 15; 70(3):346-57. PubMed ID: 16283296
    [Abstract] [Full Text] [Related]

  • 11. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.
    Appl Microbiol Biotechnol; 2009 Jan 15; 81(5):951-60. PubMed ID: 18836715
    [Abstract] [Full Text] [Related]

  • 12. Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray.
    Hirasawa T, Ashitani K, Yoshikawa K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
    J Biosci Bioeng; 2006 Dec 15; 102(6):568-71. PubMed ID: 17270724
    [Abstract] [Full Text] [Related]

  • 13. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S, Pérez-Ortín JE.
    Yeast; 2000 Jan 30; 16(2):139-48. PubMed ID: 10641036
    [Abstract] [Full Text] [Related]

  • 14. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T, Dulau L, Julien A, Blondin B.
    Yeast; 2003 Dec 30; 20(16):1369-85. PubMed ID: 14663829
    [Abstract] [Full Text] [Related]

  • 15. Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids.
    Pandey G, Yoshikawa K, Hirasawa T, Nagahisa K, Katakura Y, Furusawa C, Shimizu H, Shioya S.
    Appl Microbiol Biotechnol; 2007 May 30; 75(2):415-26. PubMed ID: 17262206
    [Abstract] [Full Text] [Related]

  • 16. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F, Ando A, Nakamura T, Takagi H, Shima J.
    Food Microbiol; 2006 Dec 30; 23(8):717-28. PubMed ID: 16943074
    [Abstract] [Full Text] [Related]

  • 17. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.
    Rossouw D, Bauer FF.
    Appl Microbiol Biotechnol; 2009 Oct 30; 84(5):937-54. PubMed ID: 19711068
    [Abstract] [Full Text] [Related]

  • 18. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T, Yoshida S, Ishiguro T, Shimada E, Mizutani S, Kobayashi O, Yoshimoto H.
    Yeast; 2009 Mar 30; 26(3):147-65. PubMed ID: 19243081
    [Abstract] [Full Text] [Related]

  • 19. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C, Nicaud JM, Barre P, Gaillardin C.
    Yeast; 1997 Aug 30; 13(10):903-15. PubMed ID: 9271106
    [Abstract] [Full Text] [Related]

  • 20. Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.
    Nishizawa M, Katou Y, Shirahige K, Toh-e A.
    Yeast; 2004 Aug 30; 21(11):903-18. PubMed ID: 15334555
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.