These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


275 related items for PubMed ID: 17134206

  • 21. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots.
    Qian H, Qiu X, Li L, Ren J.
    J Phys Chem B; 2006 May 11; 110(18):9034-40. PubMed ID: 16671712
    [Abstract] [Full Text] [Related]

  • 22. Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction.
    Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bönnemann H, Kochubey DI, Savinova ER.
    J Phys Chem B; 2006 Apr 06; 110(13):6881-90. PubMed ID: 16570998
    [Abstract] [Full Text] [Related]

  • 23. Synthesis and magnetic properties of silica-coated FePt nanocrystals.
    Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA.
    J Phys Chem B; 2006 Jun 15; 110(23):11160-6. PubMed ID: 16771378
    [Abstract] [Full Text] [Related]

  • 24. Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties.
    Ivanov SA, Piryatinski A, Nanda J, Tretiak S, Zavadil KR, Wallace WO, Werder D, Klimov VI.
    J Am Chem Soc; 2007 Sep 26; 129(38):11708-19. PubMed ID: 17727285
    [Abstract] [Full Text] [Related]

  • 25. Modeling shell formation in core-shell nanocrystals in reverse micelle systems.
    Shukla D, Mehra A.
    Langmuir; 2006 Nov 07; 22(23):9500-6. PubMed ID: 17073471
    [Abstract] [Full Text] [Related]

  • 26. Selective synthesis of manganese oxide nanostructures for electrocatalytic oxygen reduction.
    Cheng F, Shen J, Ji W, Tao Z, Chen J.
    ACS Appl Mater Interfaces; 2009 Feb 07; 1(2):460-6. PubMed ID: 20353237
    [Abstract] [Full Text] [Related]

  • 27. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity.
    Yang CW, Chanda K, Lin PH, Wang YN, Liao CW, Huang MH.
    J Am Chem Soc; 2011 Dec 14; 133(49):19993-20000. PubMed ID: 22091631
    [Abstract] [Full Text] [Related]

  • 28. Distinguishing the core from the shell in MnO(x)/MnO(y) and FeO(x)/MnO(x) core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis.
    Estradé S, Yedra L, López-Ortega A, Estrader M, Salazar-Alvarez G, Baró MD, Nogués J, Peiró F.
    Micron; 2012 Jan 14; 43(1):30-6. PubMed ID: 21546255
    [Abstract] [Full Text] [Related]

  • 29. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core.
    Zeng J, Yang J, Lee JY, Zhou W.
    J Phys Chem B; 2006 Dec 07; 110(48):24606-11. PubMed ID: 17134221
    [Abstract] [Full Text] [Related]

  • 30. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture.
    Song Q, Zhang ZJ.
    J Am Chem Soc; 2012 Jun 20; 134(24):10182-90. PubMed ID: 22621435
    [Abstract] [Full Text] [Related]

  • 31. Carbon coated MnO@Mn3N2 core-shell composites for high performance lithium ion battery anodes.
    Wu Y, Liu M, Feng H, Li J.
    Nanoscale; 2014 Dec 21; 6(24):14697-701. PubMed ID: 25384358
    [Abstract] [Full Text] [Related]

  • 32. Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies.
    Magalhães WL, Cao X, Lucia LA.
    Langmuir; 2009 Nov 17; 25(22):13250-7. PubMed ID: 19731951
    [Abstract] [Full Text] [Related]

  • 33. Shape control of iron oxide nanoparticles.
    Shavel A, Liz-Marzán LM.
    Phys Chem Chem Phys; 2009 May 21; 11(19):3762-6. PubMed ID: 19421489
    [Abstract] [Full Text] [Related]

  • 34. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence.
    Qian HS, Zhang Y.
    Langmuir; 2008 Nov 04; 24(21):12123-5. PubMed ID: 18839973
    [Abstract] [Full Text] [Related]

  • 35. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors.
    Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J.
    J Phys Chem B; 2006 Mar 30; 110(12):6015-9. PubMed ID: 16553411
    [Abstract] [Full Text] [Related]

  • 36. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.
    Kuo CH, Hua TE, Huang MH.
    J Am Chem Soc; 2009 Dec 16; 131(49):17871-8. PubMed ID: 19919066
    [Abstract] [Full Text] [Related]

  • 37. Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles.
    Chen X, Zhao D, An Y, Zhang Y, Cheng J, Wang B, Shi L.
    J Colloid Interface Sci; 2008 Jun 15; 322(2):414-20. PubMed ID: 18440011
    [Abstract] [Full Text] [Related]

  • 38. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y.
    J Am Chem Soc; 2009 Jul 01; 131(25):8824-32. PubMed ID: 19496564
    [Abstract] [Full Text] [Related]

  • 39. Core-shell nanorods of SnS-C and SnSe-C: synthesis and characterization.
    Pol VG, Pol SV, Gedanken A.
    Langmuir; 2008 May 06; 24(9):5135-9. PubMed ID: 18363419
    [Abstract] [Full Text] [Related]

  • 40. Room-temperature synthesis of nanocrystalline Ag2S and its nanocomposites with gold.
    Yang J, Ying JY.
    Chem Commun (Camb); 2009 Jun 14; (22):3187-9. PubMed ID: 19587908
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.