These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR, Scherer RC, Dewitt KJ, Ng TT. J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [Abstract] [Full Text] [Related]
3. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Zheng X, Bielamowicz S, Luo H, Mittal R. Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730 [Abstract] [Full Text] [Related]
4. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method. Luo H, Mittal R, Bielamowicz SA. J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046 [Abstract] [Full Text] [Related]
5. Simulation of vocal fold impact pressures with a self-oscillating finite-element model. Tao C, Jiang JJ, Zhang Y. J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541 [Abstract] [Full Text] [Related]
7. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions. Li S, Scherer RC, Wan M, Wang S, Wu H. J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956 [Abstract] [Full Text] [Related]
8. The effect of glottal angle on intraglottal pressure. Li S, Scherer RC, Wan M, Wang S, Wu H. J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307 [Abstract] [Full Text] [Related]
9. On the difference between negative damping and eigenmode synchronization as two phonation onset mechanisms. Zhang Z. J Acoust Soc Am; 2011 Apr; 129(4):2163-7. PubMed ID: 21476671 [Abstract] [Full Text] [Related]
10. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C, Zhang Y, Hottinger DG, Jiang JJ. J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [Abstract] [Full Text] [Related]
11. Effect of the ventricular folds in a synthetic larynx model. Kniesburges S, Birk V, Lodermeyer A, Schützenberger A, Bohr C, Becker S. J Biomech; 2017 Apr 11; 55():128-133. PubMed ID: 28285747 [Abstract] [Full Text] [Related]
12. Optimized transformation of the glottal motion into a mechanical model. Triep M, Brücker C, Stingl M, Döllinger M. Med Eng Phys; 2011 Mar 11; 33(2):210-7. PubMed ID: 21115384 [Abstract] [Full Text] [Related]
13. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis. Fulcher LP, Scherer RC, Zhai G, Zhu Z. J Voice; 2006 Dec 11; 20(4):489-512. PubMed ID: 16434169 [Abstract] [Full Text] [Related]
14. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Zhang Z, Neubauer J, Berry DA. J Acoust Soc Am; 2006 Nov 11; 120(5 Pt 1):2841-9. PubMed ID: 17139742 [Abstract] [Full Text] [Related]
15. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds. Ikeda T, Matsuzaki Y, Aomatsu T. J Biomech Eng; 2001 Dec 11; 123(6):571-9. PubMed ID: 11783728 [Abstract] [Full Text] [Related]
16. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. Scherer RC, Shinwari D, De Witt KJ, Zhang C, Kucinschi BR, Afjeh AA. J Acoust Soc Am; 2001 Apr 11; 109(4):1616-30. PubMed ID: 11325132 [Abstract] [Full Text] [Related]
17. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model. Drechsel JS, Thomson SL. J Acoust Soc Am; 2008 Jun 11; 123(6):4434-45. PubMed ID: 18537394 [Abstract] [Full Text] [Related]
18. Vocal fold bulging effects on phonation using a biophysical computer model. Alipour F, Scherer RC. J Voice; 2000 Dec 11; 14(4):470-83. PubMed ID: 11130105 [Abstract] [Full Text] [Related]
19. Asymmetric glottal jet deflection: differences of two- and three-dimensional models. Mattheus W, Brücker C. J Acoust Soc Am; 2011 Dec 11; 130(6):EL373-9. PubMed ID: 22225129 [Abstract] [Full Text] [Related]