These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 17140729
1. Dysprosium(III) hydroxide coprecipitation system for the separation and preconcentration of heavy metal contents of table salts and natural waters. Peker DS, Turkoglu O, Soylak M. J Hazard Mater; 2007 May 08; 143(1-2):555-60. PubMed ID: 17140729 [Abstract] [Full Text] [Related]
2. Gadolinium hydroxide coprecipitation system for the separation-preconcentration of some heavy metals. Soylak M, Balgunes H. J Hazard Mater; 2008 Jul 15; 155(3):595-600. PubMed ID: 18178004 [Abstract] [Full Text] [Related]
3. Determination of trace metals by atomic absorption spectrometry after coprecipitation with europium hydroxide. Soylak M, Onal G. J Hazard Mater; 2006 Sep 21; 137(2):1130-4. PubMed ID: 16647812 [Abstract] [Full Text] [Related]
4. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Tuzen M, Soylak M. J Hazard Mater; 2009 Mar 15; 162(2-3):724-9. PubMed ID: 18584957 [Abstract] [Full Text] [Related]
5. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. Divrikli U, Kartal AA, Soylak M, Elci L. J Hazard Mater; 2007 Jul 16; 145(3):459-64. PubMed ID: 17175100 [Abstract] [Full Text] [Related]
6. Simultaneous coprecipitation of lead, cobalt, copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxide prior to their flame atomic absorption spectrometric determination. Citak D, Tuzen M, Soylak M. Food Chem Toxicol; 2009 Sep 16; 47(9):2302-7. PubMed ID: 19539005 [Abstract] [Full Text] [Related]
7. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. Soylak M, Erdogan ND. J Hazard Mater; 2006 Sep 21; 137(2):1035-41. PubMed ID: 16647202 [Abstract] [Full Text] [Related]
8. Coprecipitation of Ni(2+), Cd(2+) and Pb(2+) for preconcentration in environmental samples prior to flame atomic absorption spectrometric determinations. Soylak M, Kars A, Narin I. J Hazard Mater; 2008 Nov 30; 159(2-3):435-9. PubMed ID: 18359560 [Abstract] [Full Text] [Related]
9. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination. Citak D, Tuzen M, Soylak M. J Hazard Mater; 2010 Jan 15; 173(1-3):773-7. PubMed ID: 19773117 [Abstract] [Full Text] [Related]
10. Copper(II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples. Soylak M, Kaya B, Tuzen M. J Hazard Mater; 2007 Aug 25; 147(3):832-7. PubMed ID: 17324505 [Abstract] [Full Text] [Related]
11. Carrier element-free coprecipitation (CEFC) method for separation and pre-concentration of some metal ions in natural water and soil samples. Saracoglu S, Soylak M. Food Chem Toxicol; 2010 May 25; 48(5):1328-33. PubMed ID: 20197078 [Abstract] [Full Text] [Related]
12. Celtek clay as sorbent for separation-preconcentration of metal ions from environmental samples. Tuzen M, Melek E, Soylak M. J Hazard Mater; 2006 Aug 25; 136(3):597-603. PubMed ID: 16442723 [Abstract] [Full Text] [Related]
13. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters. Karatepe A, Korkmaz E, Soylak M, Elci L. J Hazard Mater; 2010 Jan 15; 173(1-3):433-7. PubMed ID: 19758755 [Abstract] [Full Text] [Related]
14. Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101: a new solid phase extractant for preconcentration of heavy metal ions in environmental samples. Mendil D, Tuzen M, Usta C, Soylak M. J Hazard Mater; 2008 Jan 31; 150(2):357-63. PubMed ID: 17543450 [Abstract] [Full Text] [Related]
15. Coprecipitation of trace elements with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry. Uluozlu OD, Tuzen M, Mendil D, Soylak M. J Hazard Mater; 2010 Apr 15; 176(1-3):1032-7. PubMed ID: 20022172 [Abstract] [Full Text] [Related]
16. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). Duran C, Gundogdu A, Bulut VN, Soylak M, Elci L, Sentürk HB, Tüfekci M. J Hazard Mater; 2007 Jul 19; 146(1-2):347-55. PubMed ID: 17223260 [Abstract] [Full Text] [Related]
17. Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples. Tokalioğlu S, Yilmaz V, Kartal S, Delibaş A, Soykan C. J Hazard Mater; 2009 Sep 30; 169(1-3):593-8. PubMed ID: 19406573 [Abstract] [Full Text] [Related]
18. A new coprecipitation methodology with lutetium hydroxide for preconcentration of heavy metal ions in herbal plant samples. Soylak M, Murat I. J AOAC Int; 2014 Sep 30; 97(4):1189-94. PubMed ID: 25145156 [Abstract] [Full Text] [Related]
19. Determination of some heavy metals in food and environmental samples by flame atomic absorption spectrometry after coprecipitation. Soylak M, Aydin A. Food Chem Toxicol; 2011 Jun 30; 49(6):1242-8. PubMed ID: 21419188 [Abstract] [Full Text] [Related]
20. 5-Chloro-2-hydroxyaniline-copper(II) coprecipitation system for preconcentration and separation of lead(II) and chromium(III) at trace levels. Tuzen M, Citak D, Soylak M. J Hazard Mater; 2008 Oct 01; 158(1):137-41. PubMed ID: 18295402 [Abstract] [Full Text] [Related] Page: [Next] [New Search]