These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
320 related items for PubMed ID: 17145838
1. Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma. Yamamoto J, Yamamoto S, Hirano T, Li S, Koide M, Kohno E, Okada M, Inenaga C, Tokuyama T, Yokota N, Terakawa S, Namba H. Clin Cancer Res; 2006 Dec 01; 12(23):7132-9. PubMed ID: 17145838 [Abstract] [Full Text] [Related]
2. Response surface methodology: an extensive potential to optimize in vivo photodynamic therapy conditions. Tirand L, Bastogne T, Bechet D, Linder M, Thomas N, Frochot C, Guillemin F, Barberi-Heyob M. Int J Radiat Oncol Biol Phys; 2009 Sep 01; 75(1):244-52. PubMed ID: 19604651 [Abstract] [Full Text] [Related]
3. Minimally invasive photodynamic therapy (PDT) for ablation of experimental rat glioma. Hirschberg H, Spetalen S, Carper S, Hole P, Tillung T, Madsen S. Minim Invasive Neurosurg; 2006 Jun 01; 49(3):135-42. PubMed ID: 16921452 [Abstract] [Full Text] [Related]
4. Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells. Hirschberg H, Sun CH, Krasieva T, Madsen SJ. Lasers Surg Med; 2006 Dec 01; 38(10):939-45. PubMed ID: 17163479 [Abstract] [Full Text] [Related]
5. Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells. Dysart JS, Singh G, Patterson MS. Photochem Photobiol; 2005 Dec 01; 81(1):196-205. PubMed ID: 15469385 [Abstract] [Full Text] [Related]
6. Fluence rate as a modulator of PDT mechanisms. Henderson BW, Busch TM, Snyder JW. Lasers Surg Med; 2006 Jun 01; 38(5):489-93. PubMed ID: 16615136 [Abstract] [Full Text] [Related]
7. In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model. Iinuma S, Schomacker KT, Wagnieres G, Rajadhyaksha M, Bamberg M, Momma T, Hasan T. Cancer Res; 1999 Dec 15; 59(24):6164-70. PubMed ID: 10626808 [Abstract] [Full Text] [Related]
10. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A. Photochem Photobiol; 2010 Dec 15; 86(6):1356-63. PubMed ID: 20796243 [Abstract] [Full Text] [Related]
13. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Starkey JR, Rebane AK, Drobizhev MA, Meng F, Gong A, Elliott A, McInnerney K, Spangler CW. Clin Cancer Res; 2008 Oct 15; 14(20):6564-73. PubMed ID: 18927297 [Abstract] [Full Text] [Related]
17. Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Bisland SK, Lilge L, Lin A, Rusnov R, Wilson BC. Photochem Photobiol; 2004 Oct 15; 80():22-30. PubMed ID: 15339204 [Abstract] [Full Text] [Related]
18. In vivo detection of chemiluminescence to monitor photodynamic threshold dose for tumor treatment. Wei Y, Song J, Chen Q. Photochem Photobiol Sci; 2011 Jun 15; 10(6):1066-71. PubMed ID: 21416074 [Abstract] [Full Text] [Related]
19. Therapeutic effects of photosensitizers in combination with laser and ACNU on an in vivo or in vitro model of cerebral glioma. Chen KT, Hau DM, You JS, Pan HC, Wong RW. Chin Med J (Engl); 1995 Feb 15; 108(2):98-104. PubMed ID: 7774398 [Abstract] [Full Text] [Related]