These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 17146323

  • 1. Recovery kinetics throughout successive bouts of various exercises in elite cyclists.
    Hug F, Grélot L, Le Fur Y, Cozzone PJ, Bendahan D.
    Med Sci Sports Exerc; 2006 Dec; 38(12):2151-8. PubMed ID: 17146323
    [Abstract] [Full Text] [Related]

  • 2. Metabolic recovery in professional road cyclists: a 31P-MRS study.
    Hug F, Bendahan D, Le Fur Y, Cozzone PJ, Grélot L.
    Med Sci Sports Exerc; 2005 May; 37(5):846-52. PubMed ID: 15870640
    [Abstract] [Full Text] [Related]

  • 3. Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy.
    Yoshida T, Watari H, Tagawa K.
    NMR Biomed; 1996 Feb; 9(1):13-9. PubMed ID: 8842028
    [Abstract] [Full Text] [Related]

  • 4. Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise.
    Yquel RJ, Arsac LM, Thiaudière E, Canioni P, Manier G.
    J Sports Sci; 2002 May; 20(5):427-37. PubMed ID: 12043832
    [Abstract] [Full Text] [Related]

  • 5. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).
    Schocke MF, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, Jaschke WR, Greiner A.
    Magn Reson Imaging; 2004 Jan; 22(1):109-15. PubMed ID: 14972400
    [Abstract] [Full Text] [Related]

  • 6. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study.
    Vanhatalo A, Fulford J, DiMenna FJ, Jones AM.
    Exp Physiol; 2010 Apr; 95(4):528-40. PubMed ID: 20028850
    [Abstract] [Full Text] [Related]

  • 7. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists.
    Craig NP, Norton KI, Conyers RA, Woolford SM, Bourdon PC, Stanef T, Walsh CB.
    Int J Sports Med; 1995 Nov; 16(8):534-40. PubMed ID: 8776208
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a (31)P magnetic resonance spectroscopy study.
    Burnley M, Vanhatalo A, Fulford J, Jones AM.
    Exp Physiol; 2010 Jul; 95(7):798-807. PubMed ID: 20360422
    [Abstract] [Full Text] [Related]

  • 11. Failure of Rhodiola rosea to alter skeletal muscle phosphate kinetics in trained men.
    Walker TB, Altobelli SA, Caprihan A, Robergs RA.
    Metabolism; 2007 Aug; 56(8):1111-7. PubMed ID: 17618958
    [Abstract] [Full Text] [Related]

  • 12. Frequency of the VO2max plateau phenomenon in world-class cyclists.
    Lucía A, Rabadán M, Hoyos J, Hernández-Capilla M, Pérez M, San Juan AF, Earnest CP, Chicharro JL.
    Int J Sports Med; 2006 Dec; 27(12):984-92. PubMed ID: 16739087
    [Abstract] [Full Text] [Related]

  • 13. Endurance training reduces end-exercise VO2 and muscle use during submaximal cycling.
    Saunders MJ, Evans EM, Arngrimsson SA, Allison JD, Cureton KJ.
    Med Sci Sports Exerc; 2003 Feb; 35(2):257-62. PubMed ID: 12569214
    [Abstract] [Full Text] [Related]

  • 14. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.
    Forbes SC, Slade JM, Meyer RA.
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1124-31. PubMed ID: 19088770
    [Abstract] [Full Text] [Related]

  • 15. The influence of maximal aerobic power on recovery of skeletal muscle following anaerobic exercise.
    Cooke SR, Petersen SR, Quinney HA.
    Eur J Appl Physiol Occup Physiol; 1997 Dec; 75(6):512-9. PubMed ID: 9202947
    [Abstract] [Full Text] [Related]

  • 16. Using maximal and submaximal aerobic variables to monitor elite cyclists during a season.
    Barbeau P, Serresse O, Boulay MR.
    Med Sci Sports Exerc; 1993 Sep; 25(9):1062-9. PubMed ID: 8231776
    [Abstract] [Full Text] [Related]

  • 17. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement.
    Berardi JM, Price TB, Noreen EE, Lemon PW.
    Med Sci Sports Exerc; 2006 Jun; 38(6):1106-13. PubMed ID: 16775553
    [Abstract] [Full Text] [Related]

  • 18. Canine X-linked muscular dystrophy studied with in vivo phosphorus magnetic resonance spectroscopy.
    McCully K, Giger U, Argov Z, Valentine B, Cooper B, Chance B, Bank W.
    Muscle Nerve; 1991 Nov; 14(11):1091-8. PubMed ID: 1745283
    [Abstract] [Full Text] [Related]

  • 19. Influence of prior sprint exercise on the parameters of the 'all-out critical power test' in men.
    Vanhatalo A, Jones AM.
    Exp Physiol; 2009 Feb; 94(2):255-63. PubMed ID: 18996948
    [Abstract] [Full Text] [Related]

  • 20. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists.
    Creer AR, Ricard MD, Conlee RK, Hoyt GL, Parcell AC.
    Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.