These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


545 related items for PubMed ID: 17148857

  • 1. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R, Antaki JF, Naik T, Bachman TN, Kameneva MV, Wu ZJ.
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [Abstract] [Full Text] [Related]

  • 2. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R, Stoiber B, Posch M, Windberger U.
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements.
    Chen Y, Sharp MK.
    Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Deformation of erythrocytes under shear: a small-angle light scattering study.
    Mazeron P, Muller S, el Azouzi H.
    Biorheology; 1997 Feb; 34(2):99-110. PubMed ID: 9373393
    [Abstract] [Full Text] [Related]

  • 9. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator.
    Watanabe N, Arakawa Y, Sou A, Kataoka H, Ohuchi K, Fujimoto T, Takatani S.
    Physiol Meas; 2007 May; 28(5):531-45. PubMed ID: 17470986
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber.
    Artmann GM.
    Biorheology; 1995 May; 32(5):553-70. PubMed ID: 8541524
    [Abstract] [Full Text] [Related]

  • 12. Erythrocyte concentration distribution in sheathed microfluidic flows.
    Aucoin CP, Nanne EE, Leonard EF.
    ASAIO J; 2009 May; 55(5):423-7. PubMed ID: 19584710
    [Abstract] [Full Text] [Related]

  • 13. Wall shear stress in backward-facing step flow of a red blood cell suspension.
    Gijsen FJ, van de Vosse FN, Janssen JD.
    Biorheology; 1998 May; 35(4-5):263-79. PubMed ID: 10474654
    [Abstract] [Full Text] [Related]

  • 14. Design optimization of blood shearing instrument by computational fluid dynamics.
    Wu J, Antaki JF, Snyder TA, Wagner WR, Borovetz HS, Paden BE.
    Artif Organs; 2005 Jun; 29(6):482-9. PubMed ID: 15926986
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The nonlinear mechanical response of the red blood cell.
    Yoon YZ, Kotar J, Yoon G, Cicuta P.
    Phys Biol; 2008 Aug 13; 5(3):036007. PubMed ID: 18698116
    [Abstract] [Full Text] [Related]

  • 17. Investigation of platelet margination phenomena at elevated shear stress.
    Zhao R, Kameneva MV, Antaki JF.
    Biorheology; 2007 Aug 13; 44(3):161-77. PubMed ID: 17851165
    [Abstract] [Full Text] [Related]

  • 18. Microscopic Monitoring of Erythrocytes Deformation under Different Shear Stresses Using Computerized Cone and Plate Flow Chamber: Analytical Study of Normal Erythrocytes and Iron Deficiency Anemia.
    Elblbesy MA.
    Biomed Res Int; 2018 Aug 13; 2018():6067583. PubMed ID: 30474040
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.