These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 17150730
1. Assignment of hydrogen-bond structure in a ligand-nucleobase complex inside duplex DNA: combined use of quantum chemical calculations and 15N NMR experiments. Yoshimoto K, Nishizawa S, Koshino H, Sato Y, Teramae N, Maeda M. Nucleic Acids Symp Ser (Oxf); 2005; (49):255-6. PubMed ID: 17150730 [Abstract] [Full Text] [Related]
2. Hydrogen bond-mediated binding of ligands to a nucleobase at a gap site in a DNA duplex and its use for fluorescence detection of single-nucleotide polymorphisms. Seino T, Nishizawa S, Teramae N. Nucleic Acids Symp Ser (Oxf); 2005; (49):205-6. PubMed ID: 17150705 [Abstract] [Full Text] [Related]
3. Thermodynamic characterization of the binding of naphthyridines to the AP site-containing DNA duplexes. Sato Y, Seino T, Nishizawa S, Teramae N. Nucleic Acids Symp Ser (Oxf); 2006; (50):219-20. PubMed ID: 17150896 [Abstract] [Full Text] [Related]
4. Electrochemical and fluorescence detection of cytosine-related SNPs using a ferrocenyl naphthyridine derivative. Morita K, Sato Y, Seino T, Nishizawa S, Teramae N. Nucleic Acids Symp Ser (Oxf); 2007; (51):295-6. PubMed ID: 18029703 [Abstract] [Full Text] [Related]
5. Strong binding of naphthyridine derivatives to cytosine in an AP site-containing DNA duplex and their application to fluorescence detection of single nucleotide polymorphisms. Sato Y, Seino T, Nishizawa S, Teramae N. Nucleic Acids Symp Ser (Oxf); 2007; (51):313-4. PubMed ID: 18029712 [Abstract] [Full Text] [Related]
6. Fluorescence-based affinity labeling of nucleobase by hydrogen-bond forming metal complex. Yoshimoto K, Atsumi H, Saito S, Okuma M, Maeda M, Nagasaki Y. Nucleic Acids Symp Ser (Oxf); 2007; (51):303-4. PubMed ID: 18029707 [Abstract] [Full Text] [Related]
7. Use of abasic site-containing DNA strands for nucleobase recognition in water. Yoshimoto K, Nishizawa S, Minagawa M, Teramae N. J Am Chem Soc; 2003 Jul 30; 125(30):8982-3. PubMed ID: 15369332 [Abstract] [Full Text] [Related]
8. Recognition of a C-C mismatch in a DNA duplex using a fluorescent small molecule with application for "off-on" discrimination of C/G mutation. Hu L, Wang Y, Wang W, Gao Q, Qi H, Zhang C. Appl Spectrosc; 2012 Feb 30; 66(2):170-4. PubMed ID: 22449280 [Abstract] [Full Text] [Related]
9. Strong binding of naphthyridine derivatives to a guanine base in DNA duplexes containing an AP site. Gao Q, Satake H, Dai Q, Ono K, Nishizawa S, Teramae N. Nucleic Acids Symp Ser (Oxf); 2005 Feb 30; (49):219-20. PubMed ID: 17150712 [Abstract] [Full Text] [Related]
10. Fluorescence and electrochemical detection of pyrimidine/purine transversion by a ferrocenyl aminonaphthyridine derivative. Morita K, Sato Y, Seino T, Nishizawa S, Teramae N. Org Biomol Chem; 2008 Jan 21; 6(2):266-8. PubMed ID: 18174994 [Abstract] [Full Text] [Related]
11. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state. Uldry AC, Griffin JM, Yates JR, Pérez-Torralba M, María MD, Webber AL, Beaumont ML, Samoson A, Claramunt RM, Pickard CJ, Brown SP. J Am Chem Soc; 2008 Jan 23; 130(3):945-54. PubMed ID: 18166050 [Abstract] [Full Text] [Related]
12. Active site contacts in the purine nucleoside phosphorylase--hypoxanthine complex by NMR and ab initio calculations. Deng H, Cahill SM, Abad JL, Lewandowicz A, Callender RH, Schramm VL, Jones RA. Biochemistry; 2004 Dec 21; 43(50):15966-74. PubMed ID: 15595853 [Abstract] [Full Text] [Related]
13. Effect of an alkyl amino group on the binding of 1,8-naphthyridines to AP site-containing DNA duplexes. Ichihashi T, Sato Y, Seino T, Nishizawa S, Teramae N. Nucleic Acids Symp Ser (Oxf); 2008 Dec 21; (52):117-8. PubMed ID: 18776281 [Abstract] [Full Text] [Related]
14. Fluorescence detection of cytosine/guanine transversion based on a hydrogen bond forming ligand. Nishizawa S, Yoshimoto K, Seino T, Xu CY, Minagawa M, Satake H, Tong A, Teramae N. Talanta; 2004 May 10; 63(1):175-9. PubMed ID: 18969416 [Abstract] [Full Text] [Related]
15. Solution structure of a small-molecular ligand complexed with CAG trinucleotide repeat DNA. Nakatani K, Hagihara S, Goto Y, Kobori A, Hagihara M, Hayashi G, Kyo M, Nomura M, Mishima M, Kojima C. Nucleic Acids Symp Ser (Oxf); 2005 May 10; (49):49-50. PubMed ID: 17150627 [Abstract] [Full Text] [Related]
16. The binding of guanine-guanine mismatched DNA to naphthyridine dimer immobilized sensor surfaces: kinetic aspects. Nakatani K, Kobori A, Kumasawa H, Goto Y, Saito I. Bioorg Med Chem; 2004 Jun 15; 12(12):3117-23. PubMed ID: 15158779 [Abstract] [Full Text] [Related]
17. Modeling amino acid side chains in proteins: 15N NMR spectra of guanidino groups in nonpolar environments. Xiao Y, Braiman M. J Phys Chem B; 2005 Sep 08; 109(35):16953-8. PubMed ID: 16853157 [Abstract] [Full Text] [Related]
18. Changes in drug 13C NMR chemical shifts as a tool for monitoring interactions with DNA. Boudreau EA, Pelczer I, Borer PN, Heffron GJ, LaPlante SR. Biophys Chem; 2004 Jun 01; 109(3):333-44. PubMed ID: 15110931 [Abstract] [Full Text] [Related]
19. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs. Li H, Cukier RI, Bu Y. J Phys Chem B; 2008 Jul 31; 112(30):9174-81. PubMed ID: 18598072 [Abstract] [Full Text] [Related]
20. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory. von Feilitzsch T, Tuma J, Neubauer H, Verdier L, Haselsberger R, Feick R, Gurzadyan G, Voityuk AA, Griesinger C, Michel-Beyerle ME. J Phys Chem B; 2008 Jan 24; 112(3):973-89. PubMed ID: 18163608 [Abstract] [Full Text] [Related] Page: [Next] [New Search]