These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. pH-Toggled DNA architectures: reversible assembly of three-way junctions into extended 1D architectures through A-motif formation. Saha S, Bhatia D, Krishnan Y. Small; 2010 Jun 21; 6(12):1288-92. PubMed ID: 20486230 [No Abstract] [Full Text] [Related]
8. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Wang W, Liu H, Liu D, Xu Y, Yang Y, Zhou D. Langmuir; 2007 Nov 20; 23(24):11956-9. PubMed ID: 17949023 [Abstract] [Full Text] [Related]
9. Chain-like assembly of gold nanoparticles on artificial DNA templates via 'click chemistry'. Fischler M, Sologubenko A, Mayer J, Clever G, Burley G, Gierlich J, Carell T, Simon U. Chem Commun (Camb); 2008 Jan 14; (2):169-71. PubMed ID: 18092076 [Abstract] [Full Text] [Related]
11. Photoluminescence properties of sonochemically synthesized gold nanoparticles for DNA biosensing. Anandan S, Oh SD, Yoon M, Ashokkumar M. Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul 24; 76(2):191-6. PubMed ID: 20363665 [Abstract] [Full Text] [Related]
12. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Park HY, Schadt MJ, Wang L, Lim II, Njoki PN, Kim SH, Jang MY, Luo J, Zhong CJ. Langmuir; 2007 Aug 14; 23(17):9050-6. PubMed ID: 17629315 [Abstract] [Full Text] [Related]
13. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. Fan M, Brolo AG. Chemphyschem; 2008 Sep 15; 9(13):1899-907. PubMed ID: 18704901 [Abstract] [Full Text] [Related]
14. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Ghodake GS, Deshpande NG, Lee YP, Jin ES. Colloids Surf B Biointerfaces; 2010 Feb 01; 75(2):584-9. PubMed ID: 19879738 [Abstract] [Full Text] [Related]
15. Fabrication of DNA nanowires by orthogonal self-assembly and DNA intercalation on a Au patterned Si/SiO2 surface. Kobayashi K, Tonegawa N, Fujii S, Hikida J, Nozoye H, Tsutsui K, Wada Y, Chikira M, Haga MA. Langmuir; 2008 Nov 18; 24(22):13203-11. PubMed ID: 18939806 [Abstract] [Full Text] [Related]
16. DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays. Lalander CH, Zheng Y, Dhuey S, Cabrini S, Bach U. ACS Nano; 2010 Oct 26; 4(10):6153-61. PubMed ID: 20932055 [Abstract] [Full Text] [Related]
17. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Liu CW, Huang CC, Chang HT. Langmuir; 2008 Aug 05; 24(15):8346-50. PubMed ID: 18582003 [Abstract] [Full Text] [Related]
18. Parallel fabrication of DNA-aligned metal nanostructures in microelectrode gaps by a self-organization process. Maubach G, Born D, Csáki A, Fritzsche W. Small; 2005 Jun 05; 1(6):619-24. PubMed ID: 17193495 [No Abstract] [Full Text] [Related]
19. Preparation of gold nanoparticles from Mirabilis jalapa flowers. Vankar PS, Bajpai D. Indian J Biochem Biophys; 2010 Jun 05; 47(3):157-60. PubMed ID: 20653286 [Abstract] [Full Text] [Related]
20. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Kim JH, Kang T, Yoo SM, Lee SY, Kim B, Choi YK. Nanotechnology; 2009 Jun 10; 20(23):235302. PubMed ID: 19448293 [Abstract] [Full Text] [Related] Page: [Next] [New Search]