These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 17151552

  • 1. [Bipedalism in birds, a determining feature for their adaptive success].
    Abourachid A.
    J Soc Biol; 2006; 200(2):169-75. PubMed ID: 17151552
    [Abstract] [Full Text] [Related]

  • 2. The evolutionary continuum of limb function from early theropods to birds.
    Hutchinson JR, Allen V.
    Naturwissenschaften; 2009 Apr; 96(4):423-48. PubMed ID: 19107456
    [Abstract] [Full Text] [Related]

  • 3. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.
    Allen V, Bates KT, Li Z, Hutchinson JR.
    Nature; 2013 May 02; 497(7447):104-7. PubMed ID: 23615616
    [Abstract] [Full Text] [Related]

  • 4. Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis.
    Talori YS, Zhao JS, Liu YF, Lu WX, Li ZH, O'Connor JK.
    PLoS Comput Biol; 2019 May 02; 15(5):e1006846. PubMed ID: 31048911
    [Abstract] [Full Text] [Related]

  • 5. New Perspectives on the Ontogeny and Evolution of Avian Locomotion.
    Heers AM.
    Integr Comp Biol; 2016 Sep 02; 56(3):428-41. PubMed ID: 27371381
    [Abstract] [Full Text] [Related]

  • 6. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.
    Bates KT, Maidment SC, Allen V, Barrett PM.
    J Anat; 2012 Mar 02; 220(3):212-32. PubMed ID: 22211275
    [Abstract] [Full Text] [Related]

  • 7. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.
    Bishop PJ, Clemente CJ, Weems RE, Graham DF, Lamas LP, Hutchinson JR, Rubenson J, Wilson RS, Hocknull SA, Barrett RS, Lloyd DG.
    J R Soc Interface; 2017 Jul 02; 14(132):. PubMed ID: 28724627
    [Abstract] [Full Text] [Related]

  • 8. The functional origin of dinosaur bipedalism: Cumulative evidence from bipedally inclined reptiles and disinclined mammals.
    Persons WS, Currie PJ.
    J Theor Biol; 2017 May 07; 420():1-7. PubMed ID: 28254476
    [Abstract] [Full Text] [Related]

  • 9. Origin of flight: Could 'four-winged' dinosaurs fly?
    Padian K, Dial KP.
    Nature; 2005 Nov 17; 438(7066):E3; discussion E3-4. PubMed ID: 16292258
    [Abstract] [Full Text] [Related]

  • 10. Efficient cruising for swimming and flying animals is dictated by fluid drag.
    Floryan D, Van Buren T, Smits AJ.
    Proc Natl Acad Sci U S A; 2018 Aug 07; 115(32):8116-8118. PubMed ID: 29915088
    [Abstract] [Full Text] [Related]

  • 11. Avian-style respiration allowed gigantism in pterosaurs.
    Ruxton G.
    J Exp Biol; 2014 Aug 01; 217(Pt 15):2627-8. PubMed ID: 24855669
    [Abstract] [Full Text] [Related]

  • 12. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL, Dyke GJ.
    Evolution; 2009 Apr 01; 63(4):994-1002. PubMed ID: 19154383
    [Abstract] [Full Text] [Related]

  • 13. [The origin of avian flight: conciliatory and systemic approaches].
    Kurochkin EN, Bogdanovich IA.
    Izv Akad Nauk Ser Biol; 2008 Apr 01; (1):5-17. PubMed ID: 18494157
    [Abstract] [Full Text] [Related]

  • 14. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness.
    Witton MP, Habib MB.
    PLoS One; 2010 Nov 15; 5(11):e13982. PubMed ID: 21085624
    [Abstract] [Full Text] [Related]

  • 15. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs.
    Sato K, Sakamoto KQ, Watanuki Y, Takahashi A, Katsumata N, Bost CA, Weimerskirch H.
    PLoS One; 2009 Nov 15; 4(4):e5400. PubMed ID: 19401767
    [Abstract] [Full Text] [Related]

  • 16. Hoatzin nestling locomotion: Acquisition of quadrupedal limb coordination in birds.
    Abourachid A, Herrel A, Decamps T, Pages F, Fabre AC, Van Hoorebeke L, Adriaens D, Garcia Amado MA.
    Sci Adv; 2019 May 15; 5(5):eaat0787. PubMed ID: 31131317
    [Abstract] [Full Text] [Related]

  • 17. Wing-assisted incline running and the evolution of flight.
    Dial KP.
    Science; 2003 Jan 17; 299(5605):402-4. PubMed ID: 12532020
    [Abstract] [Full Text] [Related]

  • 18. From extant to extinct: locomotor ontogeny and the evolution of avian flight.
    Heers AM, Dial KP.
    Trends Ecol Evol; 2012 May 17; 27(5):296-305. PubMed ID: 22304966
    [Abstract] [Full Text] [Related]

  • 19. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM, Baier DB, Jackson BE, Dial KP.
    PLoS One; 2016 May 17; 11(4):e0153446. PubMed ID: 27100994
    [Abstract] [Full Text] [Related]

  • 20. [The flight of pterosaurs].
    Koroljov AV.
    Zh Obshch Biol; 2016 May 17; 77(3):182-238. PubMed ID: 30024133
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.