These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


462 related items for PubMed ID: 17154695

  • 1. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X, Zhu Q, Lanir Y, Margulies SS.
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [Abstract] [Full Text] [Related]

  • 2. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G, Grundman N, Abolfathi N, Naik A, Ziejewski M.
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [Abstract] [Full Text] [Related]

  • 3. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy.
    Khatyr F, Imberdis C, Vescovo P, Varchon D, Lagarde JM.
    Skin Res Technol; 2004 May; 10(2):96-103. PubMed ID: 15059176
    [Abstract] [Full Text] [Related]

  • 4. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S, Rezaei A, Karami G.
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [Abstract] [Full Text] [Related]

  • 5. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling.
    Palevski A, Glaich I, Portnoy S, Linder-Ganz E, Gefen A.
    J Biomech Eng; 2006 Oct; 128(5):782-7. PubMed ID: 16995767
    [Abstract] [Full Text] [Related]

  • 6. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W, Sacks MS.
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [Abstract] [Full Text] [Related]

  • 7. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D, Gastaldi D, Sassi V, Contro R, Ortiz C, Vena P.
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [Abstract] [Full Text] [Related]

  • 8. Material properties of the axillary pouch of the glenohumeral capsule: is isotropic material symmetry appropriate?
    Rainis EJ, Maas SA, Henninger HB, McMahon PJ, Weiss JA, Debski RE.
    J Biomech Eng; 2009 Mar; 131(3):031007. PubMed ID: 19154066
    [Abstract] [Full Text] [Related]

  • 9. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G, Middleton J, Laizans J, Dobelis M, Knets I.
    Comput Methods Biomech Biomed Engin; 2003 Mar; 6(5-6):337-45. PubMed ID: 14675954
    [Abstract] [Full Text] [Related]

  • 10. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.
    Chawla A, Mukherjee S, Karthikeyan B.
    Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021
    [Abstract] [Full Text] [Related]

  • 11. Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests.
    Schmid H, O'Callaghan P, Nash MP, Lin W, LeGrice IJ, Smaill BH, Young AA, Hunter PJ.
    Biomech Model Mechanobiol; 2008 Jun; 7(3):161-73. PubMed ID: 17487519
    [Abstract] [Full Text] [Related]

  • 12. A transversally isotropic elasto-damage constitutive model for the periodontal ligament.
    Natali AN, Pavan PG, Carniel EL, Dorow C.
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(5-6):329-36. PubMed ID: 14675953
    [Abstract] [Full Text] [Related]

  • 13. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M, van Dommelen JA, Peters GW, Wismans JS.
    Biorheology; 2006 Jun; 43(5):623-36. PubMed ID: 17047281
    [Abstract] [Full Text] [Related]

  • 14. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y, Aguilar G, Lavernia EJ, Wong BJ.
    Lasers Surg Med; 2003 Jun; 32(4):271-8. PubMed ID: 12696094
    [Abstract] [Full Text] [Related]

  • 15. Changes to the viscoelastic properties of brain tissue after traumatic axonal injury.
    Shafieian M, Darvish KK, Stone JR.
    J Biomech; 2009 Sep 18; 42(13):2136-42. PubMed ID: 19698945
    [Abstract] [Full Text] [Related]

  • 16. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C, Vogl TJ, Silber G.
    J Biomech; 2012 Apr 30; 45(7):1252-8. PubMed ID: 22360834
    [Abstract] [Full Text] [Related]

  • 17. A new constitutive model for multi-layered collagenous tissues.
    Kroon M, Holzapfel GA.
    J Biomech; 2008 Aug 28; 41(12):2766-71. PubMed ID: 18657813
    [Abstract] [Full Text] [Related]

  • 18. Myocardial material parameter estimation-a comparative study for simple shear.
    Schmid H, Nash MP, Young AA, Hunter PJ.
    J Biomech Eng; 2006 Oct 28; 128(5):742-50. PubMed ID: 16995761
    [Abstract] [Full Text] [Related]

  • 19. Material characterization of the brainstem from oscillatory shear tests.
    Arbogast KB, Margulies SS.
    J Biomech; 1998 Sep 28; 31(9):801-7. PubMed ID: 9802780
    [Abstract] [Full Text] [Related]

  • 20. Elastic and rupture properties of porcine aortic tissue measured using inflation testing.
    Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF.
    Cardiovasc Eng; 2006 Dec 28; 6(4):123-31. PubMed ID: 17136596
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.