These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
243 related items for PubMed ID: 17158737
1. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Izumitsu K, Yoshimi A, Tanaka C. Eukaryot Cell; 2007 Feb; 6(2):171-81. PubMed ID: 17158737 [Abstract] [Full Text] [Related]
2. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Yoshimi A, Kojima K, Takano Y, Tanaka C. Eukaryot Cell; 2005 Nov; 4(11):1820-8. PubMed ID: 16278449 [Abstract] [Full Text] [Related]
3. Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus. Izumitsu K, Yoshimi A, Hamada S, Morita A, Saitoh Y, Tanaka C. Mycol Res; 2009 Oct; 113(Pt 10):1208-15. PubMed ID: 19682577 [Abstract] [Full Text] [Related]
4. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Hagiwara D, Matsubayashi Y, Marui J, Furukawa K, Yamashino T, Kanamaru K, Kato M, Abe K, Kobayashi T, Mizuno T. Biosci Biotechnol Biochem; 2007 Mar; 71(3):844-7. PubMed ID: 17341812 [Abstract] [Full Text] [Related]
5. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen. Liu J, Tong SM, Qiu L, Ying SH, Feng MG. Environ Microbiol; 2017 Oct; 19(10):4091-4102. PubMed ID: 28677226 [Abstract] [Full Text] [Related]
6. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. Pest Manag Sci; 2001 May; 57(5):437-42. PubMed ID: 11374161 [Abstract] [Full Text] [Related]
7. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. Oiki S, Yaguchi T, Urayama SI, Hagiwara D. PLoS One; 2022 May; 17(1):e0262521. PubMed ID: 35100282 [Abstract] [Full Text] [Related]
8. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Pestic Biochem Physiol; 2019 May; 156():123-128. PubMed ID: 31027571 [Abstract] [Full Text] [Related]
9. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I. Biosci Biotechnol Biochem; 2002 Oct; 66(10):2209-15. PubMed ID: 12450134 [Abstract] [Full Text] [Related]
10. Fungicide activity through activation of a fungal signalling pathway. Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. Mol Microbiol; 2004 Sep; 53(6):1785-96. PubMed ID: 15341655 [Abstract] [Full Text] [Related]
11. Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae. Oide S, Liu J, Yun SH, Wu D, Michev A, Choi MY, Horwitz BA, Turgeon BG. Eukaryot Cell; 2010 Dec; 9(12):1867-80. PubMed ID: 21037181 [Abstract] [Full Text] [Related]
12. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1. Yu PL, Chen LH, Chung KR. PLoS One; 2016 Dec; 11(2):e0149153. PubMed ID: 26863027 [Abstract] [Full Text] [Related]
13. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Motoyama T, Ohira T, Kadokura K, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T. Curr Genet; 2005 May; 47(5):298-306. PubMed ID: 15776234 [Abstract] [Full Text] [Related]
14. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Jones CA, Greer-Phillips SE, Borkovich KA. Mol Biol Cell; 2007 Jun; 18(6):2123-36. PubMed ID: 17392518 [Abstract] [Full Text] [Related]
15. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S. PLoS One; 2013 Jun; 8(12):e80881. PubMed ID: 24312504 [Abstract] [Full Text] [Related]
16. PGPBS, a mitogen-activated protein kinase kinase, is required for vegetative differentiation, cell wall integrity, and pathogenicity of the barley leaf stripe fungus Pyrenophora graminea. Liang Q, Li B, Wang J, Ren P, Yao L, Meng Y, Si E, Shang X, Wang H. Gene; 2019 May 15; 696():95-104. PubMed ID: 30779945 [Abstract] [Full Text] [Related]
17. Visualizing fungicide action: an in vivo tool for rapid validation of fungicides with target location HOG pathway. Bohnert S, Neumann H, Thines E, Jacob S. Pest Manag Sci; 2019 Mar 15; 75(3):772-778. PubMed ID: 30123985 [Abstract] [Full Text] [Related]
18. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Dry IB, Yuan KH, Hutton DG. Fungal Genet Biol; 2004 Jan 15; 41(1):102-8. PubMed ID: 14643263 [Abstract] [Full Text] [Related]
19. Resistance risk assessment for fludioxonil in Bipolaris maydis. Han X, Zhao H, Ren W, Lv C, Chen C. Pestic Biochem Physiol; 2017 Jun 15; 139():32-39. PubMed ID: 28595919 [Abstract] [Full Text] [Related]
20. Molecular Mechanisms Involved in Qualitative and Quantitative Resistance to the Dicarboximide Fungicide Iprodione in Sclerotinia homoeocarpa Field Isolates. Sang H, Popko JT, Chang T, Jung G. Phytopathology; 2017 Feb 15; 107(2):198-207. PubMed ID: 27642797 [Abstract] [Full Text] [Related] Page: [Next] [New Search]