These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
285 related items for PubMed ID: 17164330
1. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2. Chu PH, Huang TY, Williams J, Stafford DW. Proc Natl Acad Sci U S A; 2006 Dec 19; 103(51):19308-13. PubMed ID: 17164330 [Abstract] [Full Text] [Related]
2. Purification of a vitamin K epoxide reductase that catalyzes conversion of vitamin K 2,3-epoxide to 3-hydroxy-2-methyl-3-phytyl-2,3-dihydronaphthoquinone. Mukharji I, Silverman RB. Proc Natl Acad Sci U S A; 1985 May 19; 82(9):2713-7. PubMed ID: 3857611 [Abstract] [Full Text] [Related]
3. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines. Jin DY, Tie JK, Stafford DW. Biochemistry; 2007 Jun 19; 46(24):7279-83. PubMed ID: 17523679 [Abstract] [Full Text] [Related]
4. Characterization and purification of the vitamin K1 2,3 epoxide reductases system from rat liver. Begent LA, Hill AP, Steventon GB, Hutt AJ, Pallister CJ, Cowell DC. J Pharm Pharmacol; 2001 Apr 19; 53(4):481-6. PubMed ID: 11341364 [Abstract] [Full Text] [Related]
5. Structure and function of vitamin K epoxide reductase. Tie JK, Stafford DW. Vitam Horm; 2008 Apr 19; 78():103-30. PubMed ID: 18374192 [Abstract] [Full Text] [Related]
6. Species comparison of vitamin K1 2,3-epoxide reductase activity in vitro: kinetics and warfarin inhibition. Wilson CR, Sauer JM, Carlson GP, Wallin R, Ward MP, Hooser SB. Toxicology; 2003 Aug 01; 189(3):191-8. PubMed ID: 12832152 [Abstract] [Full Text] [Related]
7. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. Cain D, Hutson SM, Wallin R. J Biol Chem; 1997 Nov 14; 272(46):29068-75. PubMed ID: 9360981 [Abstract] [Full Text] [Related]
8. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation. Rishavy MA, Usubalieva A, Hallgren KW, Berkner KL. J Biol Chem; 2011 Mar 04; 286(9):7267-78. PubMed ID: 20978134 [Abstract] [Full Text] [Related]
9. Conversion of vitamin K epoxide to hydroxyvitamin K by liver microsomes from warfarin-resistant rats. Nutr Rev; 1983 Aug 04; 41(8):253-4. PubMed ID: 6355923 [No Abstract] [Full Text] [Related]
10. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation. Tie JK, Nicchitta C, von Heijne G, Stafford DW. J Biol Chem; 2005 Apr 22; 280(16):16410-6. PubMed ID: 15716279 [Abstract] [Full Text] [Related]
11. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states. Davis CH, Deerfield D, Wymore T, Stafford DW, Pedersen LG. J Mol Graph Model; 2007 Sep 22; 26(2):401-8. PubMed ID: 17182266 [Abstract] [Full Text] [Related]
12. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Rost S, Fregin A, Hünerberg M, Bevans CG, Müller CR, Oldenburg J. Thromb Haemost; 2005 Oct 22; 94(4):780-6. PubMed ID: 16270630 [Abstract] [Full Text] [Related]
13. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases. Shen G, Li C, Cao Q, Megta AK, Li S, Gao M, Liu H, Shen Y, Chen Y, Yu H, Li S, Li W. FEBS J; 2022 Aug 22; 289(15):4564-4579. PubMed ID: 35113495 [Abstract] [Full Text] [Related]
14. Formation of 3-hydroxy-2,3-dihydrovitamin K1 in vivo: relationship to vitamin K epoxide reductase and warfarin resistance. Preusch PC, Suttie JW. J Nutr; 1984 May 22; 114(5):902-10. PubMed ID: 6726460 [Abstract] [Full Text] [Related]
16. Functional study of the vitamin K cycle in mammalian cells. Tie JK, Jin DY, Straight DL, Stafford DW. Blood; 2011 Mar 10; 117(10):2967-74. PubMed ID: 21239697 [Abstract] [Full Text] [Related]
17. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction. Wajih N, Hutson SM, Wallin R. J Biol Chem; 2007 Jan 26; 282(4):2626-35. PubMed ID: 17124179 [Abstract] [Full Text] [Related]