These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 17169844
41. Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG. Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1599-608. PubMed ID: 18385080 [Abstract] [Full Text] [Related]
42. Intra-arterial transplantation of adult bone marrow cells restores blood flow and regenerates skeletal muscle in ischemic limbs. Liu Q, Chen Z, Terry T, McNatt JM, Willerson JT, Zoldhelyi P. Vasc Endovascular Surg; 2009 Apr; 43(5):433-43. PubMed ID: 19628514 [Abstract] [Full Text] [Related]
43. Bone marrow-derived cells contribute to infarct remodelling. Möllmann H, Nef HM, Kostin S, von Kalle C, Pilz I, Weber M, Schaper J, Hamm CW, Elsässer A. Cardiovasc Res; 2006 Sep 01; 71(4):661-71. PubMed ID: 16854401 [Abstract] [Full Text] [Related]
44. In vivo bioluminescence imaging monitoring of stem cells' participation in choroidal neovascularization. Li H, Wang Y, Cao F. Ophthalmic Res; 2013 Sep 01; 50(1):19-26. PubMed ID: 23711902 [Abstract] [Full Text] [Related]
45. A novel imaging technique for experimental choroidal neovascularization. Campos M, Amaral J, Becerra SP, Fariss RN. Invest Ophthalmol Vis Sci; 2006 Dec 01; 47(12):5163-70. PubMed ID: 17122098 [Abstract] [Full Text] [Related]
46. LYVE-1-positive macrophages are present in normal murine eyes. Xu H, Chen M, Reid DM, Forrester JV. Invest Ophthalmol Vis Sci; 2007 May 01; 48(5):2162-71. PubMed ID: 17460275 [Abstract] [Full Text] [Related]
47. Bone marrow contributes to the population of pancreatic stellate cells in mice. Watanabe T, Masamune A, Kikuta K, Hirota M, Kume K, Satoh K, Shimosegawa T. Am J Physiol Gastrointest Liver Physiol; 2009 Dec 01; 297(6):G1138-46. PubMed ID: 19808658 [Abstract] [Full Text] [Related]
48. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N, Keating SC, Parker TG, Backx PH, Keating A. Stem Cells; 2008 Nov 01; 26(11):2884-92. PubMed ID: 18687994 [Abstract] [Full Text] [Related]
49. Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice. Koto T, Nagai N, Mochimaru H, Kurihara T, Izumi-Nagai K, Satofuka S, Shinoda H, Noda K, Ozawa Y, Inoue M, Tsubota K, Oike Y, Ishida S. Invest Ophthalmol Vis Sci; 2007 Sep 01; 48(9):4328-34. PubMed ID: 17724224 [Abstract] [Full Text] [Related]
50. Inhibitory effect of an antibody to cryptic collagen type IV epitopes on choroidal neovascularization. Jo N, Ju M, Nishijima K, Robinson GS, Adamis AP, Shima DT, Mailhos C. Mol Vis; 2006 Oct 26; 12():1243-9. PubMed ID: 17110907 [Abstract] [Full Text] [Related]
51. Lentiviral tracking of vascular differentiation in bone marrow progenitor cells. Schmeckpeper J, Ikeda Y, Kumar AH, Metharom P, Russell SJ, Caplice NM. Differentiation; 2009 Oct 26; 78(2-3):169-76. PubMed ID: 19715661 [Abstract] [Full Text] [Related]
52. Suppression of choroidal neovascularization in lectin-like oxidized low-density lipoprotein receptor type 1-deficient mice. Inomata Y, Fukushima M, Hara R, Takahashi E, Honjo M, Koga T, Kawaji T, Satoh H, Takeya M, Sawamura T, Tanihara H. Invest Ophthalmol Vis Sci; 2009 Aug 26; 50(8):3970-6. PubMed ID: 19182261 [Abstract] [Full Text] [Related]
53. Involvement of bone marrow-derived vascular progenitor cells in neovascularization during formation of the corpus luteum in mice. Kizuka F, Tokuda N, Takagi K, Adachi Y, Lee L, Tamura I, Maekawa R, Taketani T, Tamura H, Suzuki T, Owada Y, Sugino N. Biol Reprod; 2012 Sep 26; 87(3):55. PubMed ID: 22674393 [Abstract] [Full Text] [Related]
54. Integrin α5β1 promotes BMCs mobilization and differentiation to exacerbate choroidal neovascularization. Lv Y, Xu WQ, Dong WG, Li MH, Chang TF, Sun JX, Sun LJ, Pan XY, Li H, Dou GR, Wang YS. Exp Eye Res; 2020 Apr 26; 193():107991. PubMed ID: 32142723 [Abstract] [Full Text] [Related]
55. Bone marrow-derived progenitor cells contribute to lung remodelling after myocardial infarction. Dupuis J, Préfontaine A, Villeneuve L, Ruel N, Lefebvre F, Calderone A. Cardiovasc Pathol; 2007 Apr 26; 16(6):321-8. PubMed ID: 18005870 [Abstract] [Full Text] [Related]
56. Bone marrow cells: Important role on neovascularization of hepatocellular carcinoma. Zhu H, Shao Q, Sun X, Deng Z, Yuan X, Zhou X, Ding Y. J Gastroenterol Hepatol; 2012 Jul 26; 27(7):1241-51. PubMed ID: 22142567 [Abstract] [Full Text] [Related]
57. Pathological roles of bone marrow-derived stellate cells in a mouse model of alcohol-induced fatty liver. Fujimiya T, Liu J, Kojima H, Shirafuji S, Kimura H, Fujimiya M. Am J Physiol Gastrointest Liver Physiol; 2009 Sep 26; 297(3):G451-60. PubMed ID: 19608736 [Abstract] [Full Text] [Related]
58. The transdifferentiation of bone-marrow-derived cells in colonic mucosal regeneration after dextran-sulfate-sodium-induced colitis in mice. Hayashi Y, Tsuji S, Tsujii M, Nishida T, Ishii S, Nakamura T, Eguchi H, Kawano S. Pharmacology; 2007 Sep 26; 80(4):193-9. PubMed ID: 17587885 [Abstract] [Full Text] [Related]
59. In vivo imaging with cellular resolution of bone marrow cells transplanted into the ischemic brain of a mouse. Tran-Dinh A, Kubis N, Tomita Y, Karaszewski B, Calando Y, Oudina K, Petite H, Seylaz J, Pinard E. Neuroimage; 2006 Jul 01; 31(3):958-67. PubMed ID: 16516498 [Abstract] [Full Text] [Related]
60. In vitro transdifferentiation of adult bone marrow Sca-1+ cKit- cells cocultured with fetal liver cells into hepatic-like cells without fusion. Yamada Y, Nishimoto E, Mitsuya H, Yonemura Y. Exp Hematol; 2006 Jan 01; 34(1):97-106. PubMed ID: 16413396 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]