These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Glycine release provoked by disturbed Na⁺, Na⁺ and Ca²⁺ homeostasis in cerebellar nerve endings: roles of Ca²⁺ channels, Na⁺/Ca²⁺ exchangers and GlyT2 transporter reversal. Romei C, Di Prisco S, Raiteri M, Raiteri L. J Neurochem; 2011 Oct 07; 119(1):50-63. PubMed ID: 21790607 [Abstract] [Full Text] [Related]
23. GABA transporter type 1 (GAT-1) uptake inhibition reduces stimulated aspartate and glutamate release in the dorsal spinal cord in vivo via different GABAergic mechanisms. Smith CG, Bowery NG, Whitehead KJ. Neuropharmacology; 2007 Dec 07; 53(8):975-81. PubMed ID: 17981306 [Abstract] [Full Text] [Related]
24. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings. Sitges M, Chiu LM, Nekrassov V. Neurochem Int; 2006 Jul 07; 49(1):55-61. PubMed ID: 16621162 [Abstract] [Full Text] [Related]
25. Effect of antidepressant drugs on veratridine-evoked glutamate and aspartate release in rat prefrontal cortex. Gołembiowska K, Zylewska A. Pol J Pharmacol; 1999 Jul 07; 51(1):63-70. PubMed ID: 10389146 [Abstract] [Full Text] [Related]
26. Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. Burke SP, Nadler JV. J Neurochem; 1988 Nov 07; 51(5):1541-51. PubMed ID: 2902197 [Abstract] [Full Text] [Related]
27. Characteristics of taurine release in slices from adult and developing mouse brain stem. Saransaari P, Oja SS. Amino Acids; 2006 Jul 07; 31(1):35-43. PubMed ID: 16680399 [Abstract] [Full Text] [Related]
28. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus. Saransaari P, Oja SS. Amino Acids; 2003 Jul 07; 24(1-2):213-21. PubMed ID: 12624755 [Abstract] [Full Text] [Related]
29. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Kannurpatti SS, Joshi PG, Joshi NB. Neurochem Res; 2000 Dec 07; 25(12):1527-36. PubMed ID: 11152381 [Abstract] [Full Text] [Related]
30. The maxi-chloride channel in human syncytiotrophoblast: a pathway for taurine efflux in placental volume regulation? Vallejos C, Riquelme G. Placenta; 2007 Dec 07; 28(11-12):1182-91. PubMed ID: 17675153 [Abstract] [Full Text] [Related]
31. Glutamate efflux from human cerebrocortical slices during ischemia: vesicular-like mode of glutamate release and sensitivity to A(2A) adenosine receptor blockade. Marcoli M, Bonfanti A, Roccatagliata P, Chiaramonte G, Ongini E, Raiteri M, Maura G. Neuropharmacology; 2004 Nov 07; 47(6):884-91. PubMed ID: 15527822 [Abstract] [Full Text] [Related]
32. Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation. Suzuki Y, Yoshimaru T, Inoue T, Ra C. J Leukoc Biol; 2006 Mar 07; 79(3):508-18. PubMed ID: 16365155 [Abstract] [Full Text] [Related]
33. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake. Colleoni S, Jensen AA, Landucci E, Fumagalli E, Conti P, Pinto A, De Amici M, Pellegrini-Giampietro DE, De Micheli C, Mennini T, Gobbi M. J Pharmacol Exp Ther; 2008 Aug 07; 326(2):646-56. PubMed ID: 18451317 [Abstract] [Full Text] [Related]
34. Mechanism of the persistent sodium current activator veratridine-evoked Ca elevation: implication for epilepsy. Fekete A, Franklin L, Ikemoto T, Rózsa B, Lendvai B, Sylvester Vizi E, Zelles T. J Neurochem; 2009 Nov 07; 111(3):745-56. PubMed ID: 19719824 [Abstract] [Full Text] [Related]
35. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-threo-beta-benzyloxyaspartate. Phillis JW, Ren J, O'Regan MH. Brain Res; 2000 Jun 16; 868(1):105-12. PubMed ID: 10841893 [Abstract] [Full Text] [Related]
36. Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex. Chan CY, Sun HS, Shah SM, Agovic MS, Friedman E, Banerjee SP. Eur J Pharmacol; 2014 Apr 05; 728():167-75. PubMed ID: 24485893 [Abstract] [Full Text] [Related]
37. Involvement of corticostriatal glutamatergic terminals in striatal dopamine release elicited by stimulation of delta-opioid receptors. Billet F, Dourmap N, Costentin J. Eur J Neurosci; 2004 Nov 05; 20(10):2629-38. PubMed ID: 15548206 [Abstract] [Full Text] [Related]
38. External Ca(2+)-independent norepinephrine release from hippocampal slices and modulation by protein kinase C activation. Huang HY, Xie PG, Huang YZ. Zhongguo Yao Li Xue Bao; 1994 May 05; 15(3):215-9. PubMed ID: 7976373 [Abstract] [Full Text] [Related]
39. Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex. Kilb W, Hanganu IL, Okabe A, Sava BA, Shimizu-Okabe C, Fukuda A, Luhmann HJ. J Neurophysiol; 2008 Aug 05; 100(2):698-707. PubMed ID: 18562558 [Abstract] [Full Text] [Related]
40. Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain. Yoshida M, Fukuda S, Tozuka Y, Miyamoto Y, Hisatsune T. J Neurobiol; 2004 Aug 05; 60(2):166-75. PubMed ID: 15266648 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]