These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Samala G, Devi PB, Saxena S, Meda N, Yogeeswari P, Sriram D. Bioorg Med Chem; 2016 Mar 15; 24(6):1298-307. PubMed ID: 26867485 [Abstract] [Full Text] [Related]
24. Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis pantothenate synthetase: docking and MM-GB(PB)SA analysis. Ntie-Kang F, Kannan S, Wichapong K, Owono Owono LC, Sippl W, Megnassan E. Mol Biosyst; 2014 Feb 15; 10(2):223-39. PubMed ID: 24240974 [Abstract] [Full Text] [Related]
25. The crystal structure of a novel phosphopantothenate synthetase from the hyperthermophilic archaea, Thermococcus onnurineus NA1. Kim MK, An YJ, Cha SS. Biochem Biophys Res Commun; 2013 Oct 04; 439(4):533-8. PubMed ID: 24021277 [Abstract] [Full Text] [Related]
26. Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. Yokooji Y, Tomita H, Atomi H, Imanaka T. J Biol Chem; 2009 Oct 09; 284(41):28137-28145. PubMed ID: 19666462 [Abstract] [Full Text] [Related]
27. Optimization of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase Based on Group Efficiency Analysis. Hung AW, Silvestre HL, Wen S, George GP, Boland J, Blundell TL, Ciulli A, Abell C. ChemMedChem; 2016 Jan 05; 11(1):38-42. PubMed ID: 26486566 [Abstract] [Full Text] [Related]
28. Screening, identification, and characterization of mechanistically diverse inhibitors of the Mycobacterium tuberculosis enzyme, pantothenate kinase (CoaA). Venkatraman J, Bhat J, Solapure SM, Sandesh J, Sarkar D, Aishwarya S, Mukherjee K, Datta S, Malolanarasimhan K, Bandodkar B, Das KS. J Biomol Screen; 2012 Mar 05; 17(3):293-302. PubMed ID: 22086722 [Abstract] [Full Text] [Related]
29. Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase III (mtFabH) assay: principles and method. Sachdeva S, Reynolds KA. Methods Mol Med; 2008 Mar 05; 142():205-13. PubMed ID: 18437316 [Abstract] [Full Text] [Related]
30. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis. Evans JC, Trujillo C, Wang Z, Eoh H, Ehrt S, Schnappinger D, Boshoff HI, Rhee KY, Barry CE, Mizrahi V. ACS Infect Dis; 2016 Dec 09; 2(12):958-968. PubMed ID: 27676316 [Abstract] [Full Text] [Related]
31. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. Björkelid C, Bergfors T, Raichurkar AK, Mukherjee K, Malolanarasimhan K, Bandodkar B, Jones TA. J Biol Chem; 2013 Jun 21; 288(25):18260-70. PubMed ID: 23661699 [Abstract] [Full Text] [Related]
32. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria. Gao P, Yang Y, Xiao C, Liu Y, Gan M, Guan Y, Hao X, Meng J, Zhou S, Chen X, Cui J. Eur J Pharmacol; 2012 Nov 05; 694(1-3):45-52. PubMed ID: 22975264 [Abstract] [Full Text] [Related]
33. New high-throughput fluorimetric assay for discovering inhibitors of UDP-N-acetylmuramyl-L-alanine: D-glutamate (MurD) ligase. Kristan K, Kotnik M, Oblak M, Urleb U. J Biomol Screen; 2009 Apr 05; 14(4):412-8. PubMed ID: 19403924 [Abstract] [Full Text] [Related]
34. A detailed biochemical characterization of phosphopantothenate synthetase, a novel enzyme involved in coenzyme A biosynthesis in the Archaea. Ishibashi T, Tomita H, Yokooji Y, Morikita T, Watanabe B, Hiratake J, Kishimoto A, Kita A, Miki K, Imanaka T, Atomi H. Extremophiles; 2012 Nov 05; 16(6):819-28. PubMed ID: 22940806 [Abstract] [Full Text] [Related]
35. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. Oliveira JS, Pereira JH, Canduri F, Rodrigues NC, de Souza ON, de Azevedo WF, Basso LA, Santos DS. J Mol Biol; 2006 Jun 09; 359(3):646-66. PubMed ID: 16647717 [Abstract] [Full Text] [Related]
36. Structure-based optimization of MurF inhibitors. Stamper GF, Longenecker KL, Fry EH, Jakob CG, Florjancic AS, Gu YG, Anderson DD, Cooper CS, Zhang T, Clark RF, Cia Y, Black-Schaefer CL, Owen McCall J, Lerner CG, Hajduk PJ, Beutel BA, Stoll VS. Chem Biol Drug Des; 2006 Jan 09; 67(1):58-65. PubMed ID: 16492149 [Abstract] [Full Text] [Related]
37. Three-dimensional structures of apo- and holo-L-alanine dehydrogenase from Mycobacterium tuberculosis reveal conformational changes upon coenzyme binding. Agren D, Stehr M, Berthold CL, Kapoor S, Oehlmann W, Singh M, Schneider G. J Mol Biol; 2008 Apr 04; 377(4):1161-73. PubMed ID: 18304579 [Abstract] [Full Text] [Related]
38. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Lu H, Tonge PJ. Acc Chem Res; 2008 Jan 04; 41(1):11-20. PubMed ID: 18193820 [Abstract] [Full Text] [Related]
39. Structure-based in silico design of a high-affinity dipeptide inhibitor for novel protein drug target Shikimate kinase of Mycobacterium tuberculosis. Kumar M, Verma S, Sharma S, Srinivasan A, Singh TP, Kaur P. Chem Biol Drug Des; 2010 Sep 01; 76(3):277-84. PubMed ID: 20626408 [Abstract] [Full Text] [Related]
40. The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice). Genschel U, Powell CA, Abell C, Smith AG. Biochem J; 1999 Aug 01; 341 ( Pt 3)(Pt 3):669-78. PubMed ID: 10417331 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]