These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 1717611

  • 1. In vitro reconstitution of skin: fibroblasts facilitate keratinocyte growth and differentiation on acellular reticular dermis.
    Krejci NC, Cuono CB, Langdon RC, McGuire J.
    J Invest Dermatol; 1991 Nov; 97(5):843-8. PubMed ID: 1717611
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of acellular human dermis as a dermal analog in a composite skin graft.
    Medalie DA, Tompkins RG, Morgan JR.
    ASAIO J; 1996 Nov; 42(5):M455-62. PubMed ID: 8944923
    [Abstract] [Full Text] [Related]

  • 3. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice.
    Erdag G, Sheridan RL.
    Burns; 2004 Jun; 30(4):322-8. PubMed ID: 15145189
    [Abstract] [Full Text] [Related]

  • 4. Reconstitution of structure and cell function in human skin grafts derived from cryopreserved allogeneic dermis and autologous cultured keratinocytes.
    Langdon RC, Cuono CB, Birchall N, Madri JA, Kuklinska E, McGuire J, Moellmann GE.
    J Invest Dermatol; 1988 Nov; 91(5):478-85. PubMed ID: 2459265
    [Abstract] [Full Text] [Related]

  • 5. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice.
    Medalie DA, Eming SA, Tompkins RG, Yarmush ML, Krueger GG, Morgan JR.
    J Invest Dermatol; 1996 Jul; 107(1):121-7. PubMed ID: 8752850
    [Abstract] [Full Text] [Related]

  • 6. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems.
    Lee DY, Cho KH.
    Arch Dermatol Res; 2005 Jan; 296(7):296-302. PubMed ID: 15650892
    [Abstract] [Full Text] [Related]

  • 7. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft.
    Eming SA, Medalie DA, Tompkins RG, Yarmush ML, Morgan JR.
    Hum Gene Ther; 1998 Mar 01; 9(4):529-39. PubMed ID: 9525314
    [Abstract] [Full Text] [Related]

  • 8. Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts.
    Medalie DA, Eming SA, Collins ME, Tompkins RG, Yarmush ML, Morgan JR.
    Transplantation; 1997 Aug 15; 64(3):454-65. PubMed ID: 9275113
    [Abstract] [Full Text] [Related]

  • 9. Enzymatic dissociation of keratinocytes from human skin biopsies for in vitro cell propagation.
    Hybbinette S, Boström M, Lindberg K.
    Exp Dermatol; 1999 Feb 15; 8(1):30-8. PubMed ID: 10206719
    [Abstract] [Full Text] [Related]

  • 10. Acellular human dermis promotes cultured keratinocyte engraftment.
    Rennekampff HO, Kiessig V, Griffey S, Greenleaf G, Hansbrough JF.
    J Burn Care Rehabil; 1997 Feb 15; 18(6):535-44. PubMed ID: 9404989
    [Abstract] [Full Text] [Related]

  • 11. Reconstructed human skin produced in vitro and grafted on athymic mice.
    Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, Germain L.
    Transplantation; 2002 Jun 15; 73(11):1751-7. PubMed ID: 12084997
    [Abstract] [Full Text] [Related]

  • 12. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes.
    Sorrell JM, Baber MA, Caplan AI.
    J Cell Physiol; 2004 Jul 15; 200(1):134-45. PubMed ID: 15137066
    [Abstract] [Full Text] [Related]

  • 13. Culture of keratinocytes for transplantation without the need of feeder layer cells.
    Coolen NA, Verkerk M, Reijnen L, Vlig M, van den Bogaerdt AJ, Breetveld M, Gibbs S, Middelkoop E, Ulrich MM.
    Cell Transplant; 2007 Jul 15; 16(6):649-61. PubMed ID: 17912956
    [Abstract] [Full Text] [Related]

  • 14. In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold.
    Pajoum Shariati SR, Shokrgozar MA, Vossoughi M, Eslamifar A.
    Iran Biomed J; 2009 Jul 15; 13(3):169-77. PubMed ID: 19688023
    [Abstract] [Full Text] [Related]

  • 15. A new skin equivalent: keratinocytes proliferated and differentiated on collagen sponge containing fibroblasts.
    Maruguchi T, Maruguchi Y, Suzuki S, Matsuda K, Toda K, Isshiki N.
    Plast Reconstr Surg; 1994 Mar 15; 93(3):537-44; discussion 545-6. PubMed ID: 7509493
    [Abstract] [Full Text] [Related]

  • 16. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.
    Kao B, Kadomatsu K, Hosaka Y.
    Tissue Eng Part A; 2009 Sep 15; 15(9):2385-96. PubMed ID: 19292667
    [Abstract] [Full Text] [Related]

  • 17. Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice.
    Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA.
    Matrix Biol; 2001 Nov 15; 20(7):463-73. PubMed ID: 11691586
    [Abstract] [Full Text] [Related]

  • 18. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts.
    Schoop VM, Mirancea N, Fusenig NE.
    J Invest Dermatol; 1999 Mar 15; 112(3):343-53. PubMed ID: 10084313
    [Abstract] [Full Text] [Related]

  • 19. Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin.
    Fleischmajer R, MacDonald ED, Contard P, Perlish JS.
    J Histochem Cytochem; 1993 Sep 15; 41(9):1359-66. PubMed ID: 7689083
    [Abstract] [Full Text] [Related]

  • 20. The role of fibroblasts in dermal vascularization and remodeling of reconstructed human skin after transplantation onto the nude mouse.
    Demarchez M, Hartmann DJ, Regnier M, Asselineau D.
    Transplantation; 1992 Aug 15; 54(2):317-26. PubMed ID: 1496543
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.