These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


314 related items for PubMed ID: 17182217

  • 1. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision.
    Vladusich T.
    Neural Netw; 2007 Mar; 20(2):153-5. PubMed ID: 17182217
    [Abstract] [Full Text] [Related]

  • 2. [The chromatic characteristics of neuronal receptor fields in the visual cortex of the baronduki].
    Polkoshnikov EV, Chetyrbok IS.
    Neirofiziologiia; 1988 Mar; 20(2):262-5. PubMed ID: 3398977
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
    Olshausen BA, Field DJ.
    Nature; 1996 Jun 13; 381(6583):607-9. PubMed ID: 8637596
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Large shifts in color appearance from patterned chromatic backgrounds.
    Monnier P, Shevell SK.
    Nat Neurosci; 2003 Aug 13; 6(8):801-2. PubMed ID: 12872129
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Color constancy and the functional significance of McCollough effects.
    Vladusich T, Broerse J.
    Neural Netw; 2002 Sep 13; 15(7):775-809. PubMed ID: 14672159
    [Abstract] [Full Text] [Related]

  • 10. Resolving border disputes in midlevel vision.
    Nakayama K.
    Neuron; 2005 Jul 07; 47(1):5-8. PubMed ID: 15996543
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L.
    Yang EC, Lin HC, Hung YS.
    J Insect Physiol; 2004 Oct 07; 50(10):913-25. PubMed ID: 15518659
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The response dynamics of primate visual cortical neurons to simulated optical blur.
    Risner ML, Gawne TJ.
    Vis Neurosci; 2009 Oct 07; 26(4):411-20. PubMed ID: 19706205
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. [Computation of color and brightness differences by neurons in the rabbit visual cortex].
    Polianskiĭ VB, Evtikhin DV, Sokolov EN.
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2005 Oct 07; 55(1):60-70. PubMed ID: 15828423
    [Abstract] [Full Text] [Related]

  • 18. Segregation of short-wavelength sensitive ("blue") cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets.
    Hashemi-Nezhad M, Blessing EM, Dreher B, Martin PR.
    Vision Res; 2008 Nov 07; 48(26):2604-14. PubMed ID: 18397798
    [Abstract] [Full Text] [Related]

  • 19. Cortical mechanisms of colour vision.
    Gegenfurtner KR.
    Nat Rev Neurosci; 2003 Jul 07; 4(7):563-72. PubMed ID: 12838331
    [No Abstract] [Full Text] [Related]

  • 20. [Information processing in primary and higher visual cortices].
    Toyama K.
    Tanpakushitsu Kakusan Koso; 1989 May 07; 34(5):674-82. PubMed ID: 2748905
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.