These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q, Liu Y, Hou X, Zhang X, Li H, Zhang J, Liu H, Hu Y, Yu G, Li Y, Wang Y, Huang Y. BMC Plant Biol; 2019 Sep 09; 19(1):392. PubMed ID: 31500559 [Abstract] [Full Text] [Related]
3. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Li L, Lu K, Chen Z, Mu T, Hu Z, Li X. Genetics; 2008 Nov 09; 180(3):1725-42. PubMed ID: 18791236 [Abstract] [Full Text] [Related]
4. A systematic dissection in oilseed rape provides insights into the genetic architecture and molecular mechanism of yield heterosis. Ye J, Liang H, Zhao X, Li N, Song D, Zhan J, Liu J, Wang X, Tu J, Varshney RK, Shi J, Wang H. Plant Biotechnol J; 2023 Jul 09; 21(7):1479-1495. PubMed ID: 37170717 [Abstract] [Full Text] [Related]
5. Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor. Ben-Israel I, Kilian B, Nida H, Fridman E. PLoS One; 2012 Jul 09; 7(6):e38993. PubMed ID: 22761720 [Abstract] [Full Text] [Related]
6. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2574-9. PubMed ID: 12604771 [Abstract] [Full Text] [Related]
7. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Genetics; 2001 Aug 04; 158(4):1755-71. PubMed ID: 11514460 [Abstract] [Full Text] [Related]
8. The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schön CC. Genetics; 2007 Nov 04; 177(3):1815-25. PubMed ID: 18039883 [Abstract] [Full Text] [Related]
9. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. Li C, Zhao T, Yu H, Li C, Deng X, Dong Y, Zhang F, Zhang Y, Mei L, Chen J, Zhu S. BMC Genomics; 2018 Dec 12; 19(1):910. PubMed ID: 30541432 [Abstract] [Full Text] [Related]
10. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Li X, Li X, Fridman E, Tesso TT, Yu J. Proc Natl Acad Sci U S A; 2015 Sep 22; 112(38):11823-8. PubMed ID: 26351684 [Abstract] [Full Text] [Related]
11. Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci. Shen G, Hu W, Wang X, Zhou X, Han Z, Sherif A, Ayaad M, Xing Y. J Integr Plant Biol; 2022 Mar 22; 64(3):688-701. PubMed ID: 34995015 [Abstract] [Full Text] [Related]
12. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Garcia AA, Wang S, Melchinger AE, Zeng ZB. Genetics; 2008 Nov 22; 180(3):1707-24. PubMed ID: 18791260 [Abstract] [Full Text] [Related]
13. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Ma L, Wang Y, Ijaz B, Hua J. Sci Rep; 2019 Mar 08; 9(1):3984. PubMed ID: 30850683 [Abstract] [Full Text] [Related]
14. What is crop heterosis: new insights into an old topic. Fu D, Xiao M, Hayward A, Jiang G, Zhu L, Zhou Q, Li J, Zhang M. J Appl Genet; 2015 Feb 08; 56(1):1-13. PubMed ID: 25027629 [Abstract] [Full Text] [Related]
15. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang L, Wang Y, Cai S, Wang X, Li Y, Abduweli A, Hua J. G3 (Bethesda); 2015 Dec 29; 6(3):499-507. PubMed ID: 26715091 [Abstract] [Full Text] [Related]
16. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.). Liu Y, Yi Q, Hou X, Hu Y, Li Y, Yu G, Liu H, Zhang J, Huang Y. Mol Genet Genomics; 2020 Jan 29; 295(1):121-133. PubMed ID: 31511973 [Abstract] [Full Text] [Related]
17. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, Zhou M, Tian D, Tang M, Wu Q, Liu X, Chen T, Song X, Fu X, Zhao B, Liang C, Li A, Liu G, Li S, Hu S, Cao X, Yu J, Yuan L, Chen C, Zhu L. Proc Natl Acad Sci U S A; 2016 Oct 11; 113(41):E6026-E6035. PubMed ID: 27663737 [Abstract] [Full Text] [Related]
18. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Radoev M, Becker HC, Ecke W. Genetics; 2008 Jul 11; 179(3):1547-58. PubMed ID: 18562665 [Abstract] [Full Text] [Related]
19. Genetic basis of grain yield heterosis in an "immortalized F₂" maize population. Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J. Theor Appl Genet; 2014 Oct 11; 127(10):2149-58. PubMed ID: 25104328 [Abstract] [Full Text] [Related]
20. Genomic architecture of heterosis for yield traits in rice. Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B. Nature; 2016 Sep 29; 537(7622):629-633. PubMed ID: 27602511 [Abstract] [Full Text] [Related] Page: [Next] [New Search]