These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 17188709

  • 1. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV, Makhatadze GI.
    J Mol Biol; 2007 Feb 23; 366(3):842-56. PubMed ID: 17188709
    [Abstract] [Full Text] [Related]

  • 2. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI, Loladze VV, Gribenko AV, Lopez MM.
    J Mol Biol; 2004 Feb 27; 336(4):929-42. PubMed ID: 15095870
    [Abstract] [Full Text] [Related]

  • 3. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M, Martin A, Schmid FX.
    J Mol Biol; 2005 Apr 15; 347(5):1063-76. PubMed ID: 15784264
    [Abstract] [Full Text] [Related]

  • 4. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U, Perl D, Schmid FX, Heinemann U.
    J Mol Biol; 2000 Apr 07; 297(4):975-88. PubMed ID: 10736231
    [Abstract] [Full Text] [Related]

  • 5. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H, Mueller U, Perl D, Schmid FX, Heinemann U.
    J Mol Biol; 2001 Oct 19; 313(2):359-69. PubMed ID: 11800562
    [Abstract] [Full Text] [Related]

  • 6. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D, Schmid FX.
    J Mol Biol; 2001 Oct 19; 313(2):343-57. PubMed ID: 11800561
    [Abstract] [Full Text] [Related]

  • 7. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE, Wunderlich M, Roske Y, Schmid FX, Heinemann U.
    J Mol Biol; 2007 Jun 15; 369(4):1087-97. PubMed ID: 17481655
    [Abstract] [Full Text] [Related]

  • 8. Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer.
    Lee CF, Makhatadze GI, Wong KB.
    Biochemistry; 2005 Dec 27; 44(51):16817-25. PubMed ID: 16363795
    [Abstract] [Full Text] [Related]

  • 9. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS, Gribenko AV, Gribenko AV, Keiffer TR, Tomlinson J, Reihle T, Loladze VV, Makhatadze GI.
    Biochemistry; 2006 Mar 07; 45(9):2761-6. PubMed ID: 16503630
    [Abstract] [Full Text] [Related]

  • 10. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A, Sieber V, Schmid FX.
    J Mol Biol; 2001 Jun 08; 309(3):717-26. PubMed ID: 11397091
    [Abstract] [Full Text] [Related]

  • 11. Thermodynamic properties of an extremely rapid protein folding reaction.
    Schindler T, Schmid FX.
    Biochemistry; 1996 Dec 24; 35(51):16833-42. PubMed ID: 8988022
    [Abstract] [Full Text] [Related]

  • 12. Electrostatic contributions to the stability of a thermophilic cold shock protein.
    Zhou HX, Dong F.
    Biophys J; 2003 Apr 24; 84(4):2216-22. PubMed ID: 12668430
    [Abstract] [Full Text] [Related]

  • 13. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D, Mueller U, Heinemann U, Schmid FX.
    Nat Struct Biol; 2000 May 24; 7(5):380-3. PubMed ID: 10802734
    [Abstract] [Full Text] [Related]

  • 14. Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt.
    Azia A, Levy Y.
    J Mol Biol; 2009 Oct 23; 393(2):527-42. PubMed ID: 19683007
    [Abstract] [Full Text] [Related]

  • 15. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN, Minoux H, Brooks CL.
    Proteins; 2004 Oct 01; 57(1):128-41. PubMed ID: 15326599
    [Abstract] [Full Text] [Related]

  • 16. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB.
    Max KE, Zeeb M, Bienert R, Balbach J, Heinemann U.
    J Mol Biol; 2006 Jul 14; 360(3):702-14. PubMed ID: 16780871
    [Abstract] [Full Text] [Related]

  • 17. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN, Perl D, Schmid FX, Brooks CL.
    J Mol Biol; 2002 May 31; 319(2):541-54. PubMed ID: 12051927
    [Abstract] [Full Text] [Related]

  • 18. pH and Charged Mutations Modulate Cold Shock Protein Folding and Stability: A Constant pH Monte Carlo Study.
    de Oliveira VM, Caetano DLZ, da Silva FB, Mouro PR, de Oliveira AB, de Carvalho SJ, Leite VBP.
    J Chem Theory Comput; 2020 Jan 14; 16(1):765-772. PubMed ID: 31756296
    [Abstract] [Full Text] [Related]

  • 19. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.
    Mancusso R, Cruz E, Cataldi M, Mendoza C, Fuchs J, Wang H, Yang X, Tasayco ML.
    Biochemistry; 2004 Apr 06; 43(13):3835-43. PubMed ID: 15049690
    [Abstract] [Full Text] [Related]

  • 20. Kinetic consequences of native state optimization of surface-exposed electrostatic interactions in the Fyn SH3 domain.
    Zarrine-Afsar A, Zhang Z, Schweiker KL, Makhatadze GI, Davidson AR, Chan HS.
    Proteins; 2012 Mar 06; 80(3):858-70. PubMed ID: 22161863
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.