These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


389 related items for PubMed ID: 17188796

  • 1. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease.
    Fan MM, Raymond LA.
    Prog Neurobiol; 2007 Apr; 81(5-6):272-93. PubMed ID: 17188796
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice.
    Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RW, Vasuta OC, Graham RK, Hayden MR, Murphy TH, Raymond LA.
    Neuron; 2010 Jan 28; 65(2):178-90. PubMed ID: 20152125
    [Abstract] [Full Text] [Related]

  • 4. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease.
    Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA.
    Mol Cell Neurosci; 2004 Mar 28; 25(3):469-79. PubMed ID: 15033175
    [Abstract] [Full Text] [Related]

  • 5. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice.
    Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, Fan J, Coquinco A, Qiao JY, Lee H, Wang YT, Cynader M, Raymond LA.
    Neurobiol Dis; 2012 Oct 28; 48(1):40-51. PubMed ID: 22668780
    [Abstract] [Full Text] [Related]

  • 6. Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease.
    Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR, Hayden MR, Raymond LA.
    Neurobiol Dis; 2006 Feb 28; 21(2):392-403. PubMed ID: 16165367
    [Abstract] [Full Text] [Related]

  • 7. The chemical biology of clinically tolerated NMDA receptor antagonists.
    Chen HS, Lipton SA.
    J Neurochem; 2006 Jun 28; 97(6):1611-26. PubMed ID: 16805772
    [Abstract] [Full Text] [Related]

  • 8. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes.
    Ariano MA, Wagle N, Grissell AE.
    J Neurosci Res; 2005 Jun 01; 80(5):634-45. PubMed ID: 15880743
    [Abstract] [Full Text] [Related]

  • 9. Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease.
    Li L, Murphy TH, Hayden MR, Raymond LA.
    J Neurophysiol; 2004 Nov 01; 92(5):2738-46. PubMed ID: 15240759
    [Abstract] [Full Text] [Related]

  • 10. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?
    Beal MF.
    Ann Neurol; 1992 Feb 01; 31(2):119-30. PubMed ID: 1349466
    [Abstract] [Full Text] [Related]

  • 11. Excitotoxic neuronal death and the pathogenesis of Huntington's disease.
    Estrada Sánchez AM, Mejía-Toiber J, Massieu L.
    Arch Med Res; 2008 Apr 01; 39(3):265-76. PubMed ID: 18279698
    [Abstract] [Full Text] [Related]

  • 12. Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-D-aspartate receptors.
    Torres-Peraza J, Pezzi S, Canals JM, Gavaldà N, García-Martínez JM, Pérez-Navarro E, Alberch J.
    Neuroscience; 2007 Jan 19; 144(2):462-71. PubMed ID: 17081696
    [Abstract] [Full Text] [Related]

  • 13. Changes in expression of N-methyl-D-aspartate receptor subunits occur early in the R6/2 mouse model of Huntington's disease.
    Ali NJ, Levine MS.
    Dev Neurosci; 2006 Jan 19; 28(3):230-8. PubMed ID: 16679770
    [Abstract] [Full Text] [Related]

  • 14. Characterization of striatal cultures with the effect of QUIN and NMDA.
    Kumar U.
    Neurosci Res; 2004 May 19; 49(1):29-38. PubMed ID: 15099701
    [Abstract] [Full Text] [Related]

  • 15. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease.
    Sepers MD, Raymond LA.
    Drug Discov Today; 2014 Jul 19; 19(7):990-6. PubMed ID: 24603212
    [Abstract] [Full Text] [Related]

  • 16. Recent advances on the pathogenesis of Huntington's disease.
    Petersén A, Mani K, Brundin P.
    Exp Neurol; 1999 May 19; 157(1):1-18. PubMed ID: 10222105
    [Abstract] [Full Text] [Related]

  • 17. CYP46A1 protects against NMDA-mediated excitotoxicity in Huntington's disease: Analysis of lipid raft content.
    Boussicault L, Kacher R, Lamazière A, Vanhoutte P, Caboche J, Betuing S, Potier MC.
    Biochimie; 2018 Oct 19; 153():70-79. PubMed ID: 30107216
    [Abstract] [Full Text] [Related]

  • 18. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.
    Kolodziejczyk K, Raymond LA.
    Neurobiol Dis; 2016 Feb 19; 86():62-74. PubMed ID: 26621114
    [Abstract] [Full Text] [Related]

  • 19. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease.
    Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA.
    Neuron; 2002 Mar 14; 33(6):849-60. PubMed ID: 11906693
    [Abstract] [Full Text] [Related]

  • 20. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models.
    Browne SE.
    Ann N Y Acad Sci; 2008 Dec 14; 1147():358-82. PubMed ID: 19076457
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.