These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 17189765

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation.
    Feng XM, Eriksson AR, Schnürer J.
    Int J Food Microbiol; 2005 Oct 25; 104(3):249-56. PubMed ID: 15979185
    [Abstract] [Full Text] [Related]

  • 3. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.
    Hachmeister KA, Fung DY.
    Crit Rev Microbiol; 1993 Oct 25; 19(3):137-88. PubMed ID: 8267862
    [Abstract] [Full Text] [Related]

  • 4. Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation.
    Feng XM, Larsen TO, Schnürer J.
    Int J Food Microbiol; 2007 Jan 25; 113(2):133-41. PubMed ID: 16889859
    [Abstract] [Full Text] [Related]

  • 5. Image analysis for monitoring the barley tempeh fermentation process.
    Feng XM, Olsson J, Swanberg M, Schnürer J, Rönnow D.
    J Appl Microbiol; 2007 Oct 25; 103(4):1113-21. PubMed ID: 17897216
    [Abstract] [Full Text] [Related]

  • 6. The influence of inoculum composition on selected bioactive and nutritional parameters of grass pea tempeh obtained by mixed-culture fermentation with Rhizopus oligosporus and Aspergillus oryzae strains.
    Starzynska-Janiszewska A, Stodolak B, Dulinski R, Mickowska B.
    Food Sci Technol Int; 2012 Apr 25; 18(2):113-22. PubMed ID: 22414936
    [Abstract] [Full Text] [Related]

  • 7. The Growth of Yeast and Fungi, the Formation of β-Glucan, and the Antibacterial Activities during Soybean Fermentation in Producing Tempeh.
    Rizal S, Kustyawati ME, Murhadi, Hasanudin U.
    Int J Food Sci; 2021 Apr 25; 2021():6676042. PubMed ID: 33575319
    [Abstract] [Full Text] [Related]

  • 8. Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine.
    Salinas F, Garrido D, Ganga A, Veliz G, Martínez C.
    Food Microbiol; 2009 May 25; 26(3):328-32. PubMed ID: 19269577
    [Abstract] [Full Text] [Related]

  • 9. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking.
    Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I.
    Int J Food Microbiol; 2008 Jul 15; 125(2):197-203. PubMed ID: 18495281
    [Abstract] [Full Text] [Related]

  • 10. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE.
    Thanh VN, Mai le T, Tuan DA.
    Int J Food Microbiol; 2008 Dec 10; 128(2):268-73. PubMed ID: 18838186
    [Abstract] [Full Text] [Related]

  • 11. Effects of Tempeh Fermentation with Lactobacillus plantarum and Rhizopus oligosporus on Streptozotocin-Induced Type II Diabetes Mellitus in Rats.
    Huang YC, Wu BH, Chu YL, Chang WC, Wu MC.
    Nutrients; 2018 Aug 22; 10(9):. PubMed ID: 30135362
    [Abstract] [Full Text] [Related]

  • 12. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters.
    Dung NT, Rombouts FM, Nout MJ.
    Food Microbiol; 2006 Jun 22; 23(4):331-40. PubMed ID: 16943022
    [Abstract] [Full Text] [Related]

  • 13. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds.
    Starzyńska-Janiszewska A, Stodolak B, Wikiera A.
    Acta Sci Pol Technol Aliment; 2015 Jun 22; 14(2):125-132. PubMed ID: 28068010
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of substrates and storage conditions for preparing and maintaining starter cultures for tempeh fermentation.
    Shambuyi M, Beuchat LR, Hung YC, Nakayama T.
    Int J Food Microbiol; 1992 Jun 22; 15(1-2):77-85. PubMed ID: 1622761
    [Abstract] [Full Text] [Related]

  • 15. Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group.
    Jennessen J, Schnürer J, Olsson J, Samson RA, Dijksterhuis J.
    Mycol Res; 2008 May 22; 112(Pt 5):547-63. PubMed ID: 18400482
    [Abstract] [Full Text] [Related]

  • 16. Malting of barley with combinations of Lactobacillus plantarum, Aspergillus niger, Trichoderma reesei, Rhizopus oligosporus and Geotrichum candidum to enhance malt quality.
    Hattingh M, Alexander A, Meijering I, van Reenen CA, Dicks LM.
    Int J Food Microbiol; 2014 Mar 03; 173():36-40. PubMed ID: 24412956
    [Abstract] [Full Text] [Related]

  • 17. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group.
    Jennessen J, Nielsen KF, Houbraken J, Lyhne EK, Schnürer J, Frisvad JC, Samson RA.
    J Agric Food Chem; 2005 Mar 09; 53(5):1833-40. PubMed ID: 15740082
    [Abstract] [Full Text] [Related]

  • 18. Significance of yeasts in the fermentation of maize for ogi production.
    Omemu AM, Oyewole OB, Bankole MO.
    Food Microbiol; 2007 Sep 09; 24(6):571-6. PubMed ID: 17418307
    [Abstract] [Full Text] [Related]

  • 19. Yeast ecology in French cider and black olive natural fermentations.
    Coton E, Coton M, Levert D, Casaregola S, Sohier D.
    Int J Food Microbiol; 2006 Apr 15; 108(1):130-5. PubMed ID: 16380183
    [Abstract] [Full Text] [Related]

  • 20. Antioxidant activities of the water-soluble fraction in tempeh-like fermented soybean (GABA-tempeh).
    Watanabe N, Fujimoto K, Aoki H.
    Int J Food Sci Nutr; 2007 Dec 15; 58(8):577-87. PubMed ID: 17852485
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.