These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies. Tao J, Tretiak S, Zhu JX. J Chem Phys; 2008 Feb 28; 128(8):084110. PubMed ID: 18315036 [Abstract] [Full Text] [Related]
4. Test of a nonempirical density functional: short-range part of the van der Waals interaction in rare-gas dimers. Tao J, Perdew JP. J Chem Phys; 2005 Mar 15; 122(11):114102. PubMed ID: 15836196 [Abstract] [Full Text] [Related]
5. Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI. J Chem Phys; 2005 Aug 08; 123(6):62201. PubMed ID: 16122287 [Abstract] [Full Text] [Related]
6. Toward accurate reaction energetics for molecular line growth at surface: Quantum Monte Carlo and density functional theory calculations. Kanai Y, Takeuchi N. J Chem Phys; 2009 Dec 07; 131(21):214708. PubMed ID: 19968361 [Abstract] [Full Text] [Related]
9. Meta-generalized gradient approximation: explanation of a realistic nonempirical density functional. Perdew JP, Tao J, Staroverov VN, Scuseria GE. J Chem Phys; 2004 Apr 15; 120(15):6898-911. PubMed ID: 15267588 [Abstract] [Full Text] [Related]
10. Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals. Imamura Y, Otsuka T, Nakai H. J Comput Chem; 2007 Sep 15; 28(12):2067-74. PubMed ID: 17436256 [Abstract] [Full Text] [Related]
12. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. Paier J, Hirschl R, Marsman M, Kresse G. J Chem Phys; 2005 Jun 15; 122(23):234102. PubMed ID: 16008425 [Abstract] [Full Text] [Related]
13. Binding energy curves from nonempirical density functionals II. van der Waals bonds in rare-gas and alkaline-earth diatomics. Ruzsinszky A, Perdew JP, Csonka GI. J Phys Chem A; 2005 Dec 08; 109(48):11015-21. PubMed ID: 16331945 [Abstract] [Full Text] [Related]
14. Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals. Janthon P, Luo SA, Kozlov SM, Viñes F, Limtrakul J, Truhlar DG, Illas F. J Chem Theory Comput; 2014 Sep 09; 10(9):3832-9. PubMed ID: 26588528 [Abstract] [Full Text] [Related]
15. Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. Zhao Y, Truhlar DG. J Chem Phys; 2008 May 14; 128(18):184109. PubMed ID: 18532801 [Abstract] [Full Text] [Related]
16. Semiempirical hybrid density functional with perturbative second-order correlation. Grimme S. J Chem Phys; 2006 Jan 21; 124(3):034108. PubMed ID: 16438568 [Abstract] [Full Text] [Related]
17. Assessing the performance of the recent meta-GGA density functionals for describing the lattice constants, bulk moduli, and cohesive energies of alkali, alkaline-earth, and transition metals. Jana S, Sharma K, Samal P. J Chem Phys; 2018 Oct 28; 149(16):164703. PubMed ID: 30384757 [Abstract] [Full Text] [Related]
18. Comparison of DFT methods for molecular orbital eigenvalue calculations. Zhang G, Musgrave CB. J Phys Chem A; 2007 Mar 01; 111(8):1554-61. PubMed ID: 17279730 [Abstract] [Full Text] [Related]
19. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches. Ramírez-Solís A, Poteau R, Vela A, Daudey JP. J Chem Phys; 2005 Apr 22; 122(16):164306. PubMed ID: 15945683 [Abstract] [Full Text] [Related]
20. Density functional study of CO and NO adsorption on Ni-doped MgO(100). Valero R, Gomes JR, Truhlar DG, Illas F. J Chem Phys; 2010 Mar 14; 132(10):104701. PubMed ID: 20232978 [Abstract] [Full Text] [Related] Page: [Next] [New Search]