These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
395 related items for PubMed ID: 17194691
1. Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function. Robinson P, Lipscomb S, Preston LC, Altin E, Watkins H, Ashley CC, Redwood CS. FASEB J; 2007 Mar; 21(3):896-905. PubMed ID: 17194691 [Abstract] [Full Text] [Related]
3. A recombinant monocysteine mutant (Ser to Cys-155) of fast skeletal troponin T: identification by cross-linking of a domain involved in a physiologically relevant interaction with troponins C and I. Jha PK, Sarkar S. Biochemistry; 1998 Sep 01; 37(35):12253-60. PubMed ID: 9724539 [Abstract] [Full Text] [Related]
5. Distinct regions of troponin I regulate Ca2+-dependent activation and Ca2+ sensitivity of the acto-S1-TM ATPase activity of the thin filament. Van Eyk JE, Thomas LT, Tripet B, Wiesner RJ, Pearlstone JR, Farah CS, Reinach FC, Hodges RS. J Biol Chem; 1997 Apr 18; 272(16):10529-37. PubMed ID: 9099697 [Abstract] [Full Text] [Related]
6. Powerful activation of skeletal muscle actomyosin ATPase by goniodomin A is highly sensitive to troponin/tropomyosin complex. Matsunaga K, Nakatani K, Murakami M, Yamaguchi K, Ohizumi Y. J Pharmacol Exp Ther; 1999 Dec 18; 291(3):1121-6. PubMed ID: 10565832 [Abstract] [Full Text] [Related]
7. Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. Luo Y, Wu JL, Li B, Langsetmo K, Gergely J, Tao T. J Mol Biol; 2000 Feb 25; 296(3):899-910. PubMed ID: 10677290 [Abstract] [Full Text] [Related]
8. Effects of two hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H, Marston SB. Biochem Biophys Res Commun; 1997 Jul 30; 236(3):760-4. PubMed ID: 9245729 [Abstract] [Full Text] [Related]
9. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T. J Mol Biol; 2005 Sep 09; 352(1):178-201. PubMed ID: 16061251 [Abstract] [Full Text] [Related]
10. Involvement of conserved, acidic residues in the N-terminal domain of troponin C in calcium-dependent regulation. Kobayashi T, Zhao X, Wade R, Collins JH. Biochemistry; 1999 Apr 27; 38(17):5386-91. PubMed ID: 10220325 [Abstract] [Full Text] [Related]
11. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca(2+)-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. Gomes AV, Harada K, Potter JD. J Mol Cell Cardiol; 2005 Nov 27; 39(5):754-65. PubMed ID: 16005017 [Abstract] [Full Text] [Related]
12. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Sung SS, Brassington AM, Grannatt K, Rutherford A, Whitby FG, Krakowiak PA, Jorde LB, Carey JC, Bamshad M. Am J Hum Genet; 2003 Mar 27; 72(3):681-90. PubMed ID: 12592607 [Abstract] [Full Text] [Related]
13. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex. Kimura-Sakiyama C, Ueno Y, Wakabayashi K, Miki M. J Mol Biol; 2008 Feb 08; 376(1):80-91. PubMed ID: 18155235 [Abstract] [Full Text] [Related]
14. Effects of a R133W beta-tropomyosin mutation on regulation of muscle contraction in single human muscle fibres. Ochala J, Li M, Tajsharghi H, Kimber E, Tulinius M, Oldfors A, Larsson L. J Physiol; 2007 Jun 15; 581(Pt 3):1283-92. PubMed ID: 17430991 [Abstract] [Full Text] [Related]
15. Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. Bing W, Knott A, Redwood C, Esposito G, Purcell I, Watkins H, Marston S. J Mol Cell Cardiol; 2000 Aug 15; 32(8):1489-98. PubMed ID: 10900175 [Abstract] [Full Text] [Related]
16. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Sakuma A, Kimura-Sakiyama C, Onoue A, Shitaka Y, Kusakabe T, Miki M. Biochemistry; 2006 Aug 08; 45(31):9550-8. PubMed ID: 16878989 [Abstract] [Full Text] [Related]
17. Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. Chaudhuri T, Mukherjea M, Sachdev S, Randall JD, Sarkar S. J Mol Biol; 2005 Sep 09; 352(1):58-71. PubMed ID: 16081096 [Abstract] [Full Text] [Related]
18. Ca(2+)-dependent, myosin subfragment 1-induced proximity changes between actin and the inhibitory region of troponin I. Kobayashi T, Kobayashi M, Collins JH. Biochim Biophys Acta; 2001 Oct 18; 1549(2):148-54. PubMed ID: 11690651 [Abstract] [Full Text] [Related]
19. Mutations Q93H and E97K in TPM2 Disrupt Ca-Dependent Regulation of Actin Filaments. Śliwinska M, Robaszkiewicz K, Wasąg P, Moraczewska J. Int J Mol Sci; 2021 Apr 14; 22(8):. PubMed ID: 33919826 [Abstract] [Full Text] [Related]
20. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP. Am J Physiol Cell Physiol; 2006 Feb 14; 290(2):C567-76. PubMed ID: 16192301 [Abstract] [Full Text] [Related] Page: [Next] [New Search]