These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


982 related items for PubMed ID: 17196648

  • 1. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH, Park IK, Kim JM, Lee JH.
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [Abstract] [Full Text] [Related]

  • 4. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK.
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [Abstract] [Full Text] [Related]

  • 5. Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold.
    Oh SH, Kim TH, Im GI, Lee JH.
    Biomacromolecules; 2010 Aug 09; 11(8):1948-55. PubMed ID: 20690707
    [Abstract] [Full Text] [Related]

  • 6. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM, Park K, Huh KM, Park KH.
    J Control Release; 2007 Dec 04; 124(1-2):51-9. PubMed ID: 17904679
    [Abstract] [Full Text] [Related]

  • 7. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S.
    Biomaterials; 2005 Aug 04; 26(23):4817-27. PubMed ID: 15763261
    [Abstract] [Full Text] [Related]

  • 8. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L, Ao Q, Wang A, Gong K, Wang X, Lu G, Gong Y, Zhao N, Zhang X.
    J Biomater Appl; 2007 Nov 04; 22(3):223-39. PubMed ID: 17255157
    [Abstract] [Full Text] [Related]

  • 9. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V, Kaplan D.
    Biomaterials; 2005 Sep 04; 26(27):5474-91. PubMed ID: 15860204
    [Abstract] [Full Text] [Related]

  • 10. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM, Haugh MG, O'Brien FJ.
    Biomaterials; 2010 Jan 04; 31(3):461-6. PubMed ID: 19819008
    [Abstract] [Full Text] [Related]

  • 11. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G, Birch MA, Bokhari MA.
    Biomaterials; 2004 Aug 04; 25(18):3991-4000. PubMed ID: 15046889
    [Abstract] [Full Text] [Related]

  • 12. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering.
    Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, Schantz JT.
    Int J Oral Maxillofac Surg; 2006 Oct 04; 35(10):928-34. PubMed ID: 16762529
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering.
    Chang KY, Cheng LW, Ho GH, Huang YP, Lee YD.
    Acta Biomater; 2009 Jul 04; 5(6):1937-47. PubMed ID: 19282262
    [Abstract] [Full Text] [Related]

  • 15. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration.
    Fuji T, Anada T, Honda Y, Shiwaku Y, Koike H, Kamakura S, Sasaki K, Suzuki O.
    Tissue Eng Part A; 2009 Nov 04; 15(11):3525-35. PubMed ID: 19456237
    [Abstract] [Full Text] [Related]

  • 16. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L, Güçeri S, Wen X, Gandhi M, Sun W.
    Biomaterials; 2007 Dec 04; 28(35):5291-7. PubMed ID: 17884162
    [Abstract] [Full Text] [Related]

  • 17. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 04; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 18. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M, Wu BM, Dunn JC.
    J Biomed Mater Res A; 2008 Dec 15; 87(4):1010-6. PubMed ID: 18257081
    [Abstract] [Full Text] [Related]

  • 19. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition.
    Miot S, Woodfield T, Daniels AU, Suetterlin R, Peterschmitt I, Heberer M, van Blitterswijk CA, Riesle J, Martin I.
    Biomaterials; 2005 May 15; 26(15):2479-89. PubMed ID: 15585250
    [Abstract] [Full Text] [Related]

  • 20. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q, Peng J, Lu S, Sun M, Huang J, Zhang L, Xu W, Zhao B, Sui X, Yao J, Yuan M.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar 15; 22(3):359-63. PubMed ID: 18396722
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 50.