These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


466 related items for PubMed ID: 17199346

  • 1. Interaction of low-energy electrons with the purine bases, nucleosides, and nucleotides of DNA.
    Winstead C, McKoy V.
    J Chem Phys; 2006 Dec 28; 125(24):244302. PubMed ID: 17199346
    [Abstract] [Full Text] [Related]

  • 2. Low-energy electron scattering from DNA and RNA bases: shape resonances and radiation damage.
    Tonzani S, Greene CH.
    J Chem Phys; 2006 Feb 07; 124(5):054312. PubMed ID: 16468874
    [Abstract] [Full Text] [Related]

  • 3. Interaction of low-energy electrons with the pyrimidine bases and nucleosides of DNA.
    Winstead C, McKoy V, d'Almeida Sanchez S.
    J Chem Phys; 2007 Aug 28; 127(8):085105. PubMed ID: 17764304
    [Abstract] [Full Text] [Related]

  • 4. Interaction of the DNA bases and their mononucleotides with pyridine-2-carbaldehyde thiosemicarbazonecopper(II) complexes. Structure of the cytosine derivative.
    García B, Garcia-Tojal J, Ruiz R, Gil-García R, Ibeas S, Donnadieu B, Leal JM.
    J Inorg Biochem; 2008 Oct 28; 102(10):1892-900. PubMed ID: 18684508
    [Abstract] [Full Text] [Related]

  • 5. Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: from the gas phase to the aqueous environment.
    Pluharrová E, Jungwirth P, Bradforth SE, Slavícek P.
    J Phys Chem B; 2011 Feb 10; 115(5):1294-305. PubMed ID: 21247073
    [Abstract] [Full Text] [Related]

  • 6. Low-energy electron scattering with the purine bases of DNA/RNA using the R-matrix method.
    Dora A, Bryjko L, van Mourik T, Tennyson J.
    J Chem Phys; 2012 Jan 14; 136(2):024324. PubMed ID: 22260596
    [Abstract] [Full Text] [Related]

  • 7. Refinement of DNA structures through near-edge X-ray absorption fine structure analysis: applications on guanine and cytosine nucleobases, nucleosides, and nucleotides.
    Hua W, Gao B, Li S, Agren H, Luo Y.
    J Phys Chem B; 2010 Oct 21; 114(41):13214-22. PubMed ID: 20873844
    [Abstract] [Full Text] [Related]

  • 8. Fragmentation of the adenine and guanine molecules induced by electron collisions.
    Minaev BF, Shafranyosh MI, Svida YY, Sukhoviya MI, Shafranyosh II, Baryshnikov GV, Minaeva VA.
    J Chem Phys; 2014 May 07; 140(17):175101. PubMed ID: 24811665
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Simple ethers as models of sugar molecules in calculations of vertical excitation energies of DNA and RNA nucleosides.
    Alavi S.
    J Phys Chem A; 2005 Oct 27; 109(42):9536-41. PubMed ID: 16866405
    [Abstract] [Full Text] [Related]

  • 11. Binding of DNA nucleobases and nucleosides with graphene.
    Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK, Sood AK, Rao CN.
    Chemphyschem; 2009 Jan 12; 10(1):206-10. PubMed ID: 18814150
    [Abstract] [Full Text] [Related]

  • 12. Shape resonance states of the low-energy electron attachments to DNA base tautomers.
    Wang YF, Tian SX.
    Phys Chem Chem Phys; 2011 Apr 07; 13(13):6169-75. PubMed ID: 21350785
    [Abstract] [Full Text] [Related]

  • 13. On the effect of low-energy electron induced DNA strand break in aqueous solution: a theoretical study indicating guanine as a weak link in DNA.
    Schyman P, Laaksonen A.
    J Am Chem Soc; 2008 Sep 17; 130(37):12254-5. PubMed ID: 18715005
    [Abstract] [Full Text] [Related]

  • 14. One-electron oxidation of individual DNA bases and DNA base stacks.
    Close DM.
    J Phys Chem A; 2010 Feb 04; 114(4):1860-7. PubMed ID: 20050713
    [Abstract] [Full Text] [Related]

  • 15. The negative ion states of molecules: adenine and guanine.
    Chen ES, Chen EC.
    Biochem Biophys Res Commun; 2001 Nov 30; 289(2):421-6. PubMed ID: 11716490
    [Abstract] [Full Text] [Related]

  • 16. Theoretical modelling of radiolytic damage of free DNA bases and within DNA macromolecule.
    Stepán V, Davídková M.
    Radiat Prot Dosimetry; 2006 Nov 30; 122(1-4):110-2. PubMed ID: 17229783
    [Abstract] [Full Text] [Related]

  • 17. An ab initio study of substituent effects on the excited states of purine derivatives.
    Mburu E, Matsika S.
    J Phys Chem A; 2008 Dec 04; 112(48):12485-91. PubMed ID: 18986130
    [Abstract] [Full Text] [Related]

  • 18. Effect of the ribose versus 2'-deoxyribose residue on the metal ion-binding properties of purine nucleotides.
    Mucha A, Knobloch B, Jezowska-Bojczuk M, Kozłowski H, Sigel RK.
    Dalton Trans; 2008 Oct 21; (39):5368-77. PubMed ID: 18827944
    [Abstract] [Full Text] [Related]

  • 19. Conformationally constrained purine mimics. Incorporation of adenine and guanine into spirocyclic nucleosides.
    Paquette LA, Kahane AL, Seekamp CK.
    J Org Chem; 2004 Aug 20; 69(17):5555-62. PubMed ID: 15307723
    [Abstract] [Full Text] [Related]

  • 20. Theoretical analysis on the transition state of the anticancer drug trans-[PtCl2(isopropylamine)2] and its cis isomer binding to DNA purine bases.
    Zhou L.
    J Phys Chem B; 2009 Feb 19; 113(7):2110-27. PubMed ID: 19173577
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.