These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


311 related items for PubMed ID: 17203966

  • 1. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.
    Men L, Wang Y.
    J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966
    [Abstract] [Full Text] [Related]

  • 2. Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY, Joshi RK, Yan H, Seto NO, Palcic MM, Macher BA.
    J Mass Spectrom; 2000 Aug; 35(8):990-1002. PubMed ID: 10972999
    [Abstract] [Full Text] [Related]

  • 3. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL, Ma LH, Wood MJ.
    Biochemistry; 2007 Dec 18; 46(50):14725-32. PubMed ID: 18020457
    [Abstract] [Full Text] [Related]

  • 4. Identification of nitroglycerin-induced cysteine modifications of pro-matrix metalloproteinase-9.
    Krishnatry AS, Kamei T, Wang H, Qu J, Fung HL.
    Rapid Commun Mass Spectrom; 2011 Aug 30; 25(16):2291-8. PubMed ID: 21766372
    [Abstract] [Full Text] [Related]

  • 5. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.
    Cook NL, Pattison DI, Davies MJ.
    Free Radic Biol Med; 2012 Dec 01; 53(11):2072-80. PubMed ID: 23032100
    [Abstract] [Full Text] [Related]

  • 6. The effect of intra- and intermolecular disulfide bonds after peptide grafting on the properties of yeast alcohol dehydrogenase.
    Magonet E, Delaive E, Martin B, Remacle J.
    Biochem Int; 1992 Dec 01; 28(4):603-12. PubMed ID: 1482399
    [Abstract] [Full Text] [Related]

  • 7. Cysteine reactivity in Thermoanaerobacter brockii alcohol dehydrogenase.
    Peretz M, Weiner LM, Burstein Y.
    Protein Sci; 1997 May 01; 6(5):1074-83. PubMed ID: 9144779
    [Abstract] [Full Text] [Related]

  • 8. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B, Labarre J, Toledano MB.
    Nature; 2003 Oct 30; 425(6961):980-4. PubMed ID: 14586471
    [Abstract] [Full Text] [Related]

  • 9. Quantitative electrospray ionization mass spectrometry of zinc finger oxidation: the reaction of XPA zinc finger with H(2)O(2).
    Smirnova J, Zhukova L, Witkiewicz-Kucharczyk A, Kopera E, Oledzki J, Wysłouch-Cieszyńska A, Palumaa P, Hartwig A, Bal W.
    Anal Biochem; 2007 Oct 15; 369(2):226-31. PubMed ID: 17577569
    [Abstract] [Full Text] [Related]

  • 10. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells.
    Kinumi T, Kimata J, Taira T, Ariga H, Niki E.
    Biochem Biophys Res Commun; 2004 May 07; 317(3):722-8. PubMed ID: 15081400
    [Abstract] [Full Text] [Related]

  • 11. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J, Rudolph J.
    Biochemistry; 2003 Sep 02; 42(34):10060-70. PubMed ID: 12939134
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Redox-dependent formation of disulfide bonds in human replication protein A.
    Men L, Roginskaya M, Zou Y, Wang Y.
    Rapid Commun Mass Spectrom; 2007 Sep 02; 21(16):2743-9. PubMed ID: 17659658
    [Abstract] [Full Text] [Related]

  • 14. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
    Shenton D, Grant CM.
    Biochem J; 2003 Sep 01; 374(Pt 2):513-9. PubMed ID: 12755685
    [Abstract] [Full Text] [Related]

  • 15. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F, Mostertz J, Albrecht D, Hecker M.
    Mol Microbiol; 2005 Oct 01; 58(2):409-25. PubMed ID: 16194229
    [Abstract] [Full Text] [Related]

  • 16. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY, Willard D, Rudolph J.
    Biochemistry; 2009 Feb 17; 48(6):1399-409. PubMed ID: 19166311
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and conformational preferences of peptides and proteins with cysteine sulfonic acid.
    Bhatt MR, Zondlo NJ.
    Org Biomol Chem; 2023 Mar 29; 21(13):2779-2800. PubMed ID: 36920119
    [Abstract] [Full Text] [Related]

  • 18. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases.
    Chen YY, Huang YF, Khoo KH, Meng TC.
    Methods; 2007 Jul 29; 42(3):243-9. PubMed ID: 17532511
    [Abstract] [Full Text] [Related]

  • 19. Cys redox reactions and metal binding of a Cys2His2 zinc finger.
    Larabee JL, Hocker JR, Hanas JS.
    Arch Biochem Biophys; 2005 Feb 01; 434(1):139-49. PubMed ID: 15629117
    [Abstract] [Full Text] [Related]

  • 20. Cysteine modification by lipid peroxidation products inhibits protein disulfide isomerase.
    Carbone DL, Doorn JA, Kiebler Z, Petersen DR.
    Chem Res Toxicol; 2005 Aug 01; 18(8):1324-31. PubMed ID: 16097806
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.