These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


620 related items for PubMed ID: 17207834

  • 1. Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment.
    De Wever H, Weiss S, Reemtsma T, Vereecken J, Müller J, Knepper T, Rörden O, Gonzalez S, Barcelo D, Dolores Hernando M.
    Water Res; 2007 Feb; 41(4):935-45. PubMed ID: 17207834
    [Abstract] [Full Text] [Related]

  • 2. Comparison of linear alkylbenzene sulfonates removal in conventional activated sludge systems and membrane bioreactors.
    De Wever H, Van Roy S, Dotremont C, Miller J, Knepper T.
    Water Sci Technol; 2004 Feb; 50(5):219-25. PubMed ID: 15497851
    [Abstract] [Full Text] [Related]

  • 3. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J, Petrović M, Barceló D.
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Membrane bioreactors for municipal wastewater treatment - a viable option to reduce the amount of polar pollutants discharged into surface waters?
    Weiss S, Reemtsma T.
    Water Res; 2008 Aug; 42(14):3837-47. PubMed ID: 18684484
    [Abstract] [Full Text] [Related]

  • 8. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants.
    Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H.
    Water Res; 2005 Nov; 39(19):4797-807. PubMed ID: 16242170
    [Abstract] [Full Text] [Related]

  • 9. Comparison of the removal of phthalates and other organic pollutants from industrial wastewaters in membrane bioreactor and conventional activated sludge treatment plants.
    Llop A, Borrull F, Pocurull E.
    Water Sci Technol; 2009 Nov; 60(9):2425-37. PubMed ID: 19901476
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Modelling the degradation of low concentration pollutants in membrane bioreactors.
    Peev M, Schönerklee M, De Wever H.
    Water Sci Technol; 2004 Nov; 50(5):209-18. PubMed ID: 15497850
    [Abstract] [Full Text] [Related]

  • 19. Comparative study of polyvinylidene fluoride and PES flat membranes in submerged MBRs to treat domestic wastewater.
    Zhu T, Xie YH, Jiang J, Wang YT, Zhang HJ, Nozaki T.
    Water Sci Technol; 2009 Nov; 59(3):399-405. PubMed ID: 19213993
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.