These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


277 related items for PubMed ID: 17210920

  • 1. Modern origin of numerous alternatively spliced human introns from tandem arrays.
    Zhuo D, Madden R, Elela SA, Chabot B.
    Proc Natl Acad Sci U S A; 2007 Jan 16; 104(3):882-6. PubMed ID: 17210920
    [Abstract] [Full Text] [Related]

  • 2. Evidence for the regulation of alternative splicing via complementary DNA sequence repeats.
    Lian Y, Garner HR.
    Bioinformatics; 2005 Apr 15; 21(8):1358-64. PubMed ID: 15673565
    [Abstract] [Full Text] [Related]

  • 3. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss.
    Modrek B, Lee CJ.
    Nat Genet; 2003 Jun 15; 34(2):177-80. PubMed ID: 12730695
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.
    Sverdlov AV, Babenko VN, Rogozin IB, Koonin EV.
    Gene; 2004 Aug 18; 338(1):85-91. PubMed ID: 15302409
    [Abstract] [Full Text] [Related]

  • 8. Models of spliceosomal intron proliferation in the face of widespread ectopic expression.
    Rodríguez-Trelles F, Tarrío R, Ayala FJ.
    Gene; 2006 Feb 01; 366(2):201-8. PubMed ID: 16288838
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Investigation of loss and gain of introns in the compact genomes of pufferfishes (Fugu and Tetraodon).
    Loh YH, Brenner S, Venkatesh B.
    Mol Biol Evol; 2008 Mar 01; 25(3):526-35. PubMed ID: 18089580
    [Abstract] [Full Text] [Related]

  • 11. Growth hormone transcription factor ZN-16 genomic coding regions are composed of a single exon and are evolutionarily conserved in mammals.
    Flynn MP, Hurley DL.
    Gene; 2006 Mar 01; 368():78-83. PubMed ID: 16303260
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences.
    Kondrashov FA, Koonin EV.
    Trends Genet; 2003 Mar 01; 19(3):115-9. PubMed ID: 12615001
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Intron dynamics and the evolution of integrin beta-subunit genes: maintenance of an ancestral gene structure in the coral, Acropora millepora.
    Schmitt DM, Brower DL.
    J Mol Evol; 2001 Dec 01; 53(6):703-10. PubMed ID: 11677630
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. [Prediction and computer analysis of the exon-intron structure of human genes].
    Mironov AA, Gel'fand MS.
    Mol Biol (Mosk); 2004 Dec 01; 38(1):82-91. PubMed ID: 15042838
    [Abstract] [Full Text] [Related]

  • 18. Alternative splicing at NAGNAG acceptor sites shares common properties in land plants and mammals.
    Iida K, Shionyu M, Suso Y.
    Mol Biol Evol; 2008 Apr 01; 25(4):709-18. PubMed ID: 18234709
    [Abstract] [Full Text] [Related]

  • 19. A comparative analysis of numt evolution in human and chimpanzee.
    Hazkani-Covo E, Graur D.
    Mol Biol Evol; 2007 Jan 01; 24(1):13-8. PubMed ID: 17056643
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.