These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 17211547
1. Retrotransposons and tandem repeat sequences in the nuclear genomes of cryptomonad algae. Khan H, Kozera C, Curtis BA, Bussey JT, Theophilou S, Bowman S, Archibald JM. J Mol Evol; 2007 Feb; 64(2):223-36. PubMed ID: 17211547 [Abstract] [Full Text] [Related]
2. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Lane CE, Khan H, MacKinnon M, Fong A, Theophilou S, Archibald JM, SMBE Tri-National Young Investigators. Mol Biol Evol; 2006 May; 23(5):856-65. PubMed ID: 16306383 [Abstract] [Full Text] [Related]
3. Novel nucleomorph genome architecture in the cryptomonad genus hemiselmis. Lane CE, Archibald JM. J Eukaryot Microbiol; 2006 May; 53(6):515-21. PubMed ID: 17123416 [Abstract] [Full Text] [Related]
4. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM. Genome Biol Evol; 2011 May; 3():44-54. PubMed ID: 21147880 [Abstract] [Full Text] [Related]
5. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM. BMC Genomics; 2008 May 12; 9():215. PubMed ID: 18474103 [Abstract] [Full Text] [Related]
6. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Patron NJ, Inagaki Y, Keeling PJ. Curr Biol; 2007 May 15; 17(10):887-91. PubMed ID: 17462896 [Abstract] [Full Text] [Related]
7. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PS, Hara Y, Archibald JM. Genome Biol Evol; 2009 Nov 13; 1():439-48. PubMed ID: 20333213 [Abstract] [Full Text] [Related]
8. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY, Dai HY, Zhao GL, Ma Y, Ou CQ, Li H, Li LG, Zhang ZH. J Integr Plant Biol; 2008 Sep 13; 50(9):1130-9. PubMed ID: 18844781 [Abstract] [Full Text] [Related]
9. Actin gene family dynamics in cryptomonads and red algae. Tanifuji G, Archibald JM. J Mol Evol; 2010 Sep 13; 71(3):169-79. PubMed ID: 20700735 [Abstract] [Full Text] [Related]
10. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, Roger AJ, Kim E, Archibald JM. BMC Biol; 2018 Nov 28; 16(1):137. PubMed ID: 30482201 [Abstract] [Full Text] [Related]
11. Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). Novikova O, Mayorov V, Smyshlyaev G, Fursov M, Adkison L, Pisarenko O, Blinov A. Plant J; 2008 Nov 28; 56(4):562-74. PubMed ID: 18643967 [Abstract] [Full Text] [Related]
12. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. Kim JI, Yoon HS, Yi G, Shin W, Archibald JM. BMC Genomics; 2018 Apr 20; 19(1):275. PubMed ID: 29678149 [Abstract] [Full Text] [Related]
13. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Douglas SE, Murphy CA, Spencer DF, Gray MW. Nature; 1991 Mar 14; 350(6314):148-51. PubMed ID: 2005963 [Abstract] [Full Text] [Related]
14. Hemoglobins in the genome of the cryptomonad Guillardia theta. Smith DR, Vinogradov SN, Hoogewijs D. Biol Direct; 2014 May 08; 9():7. PubMed ID: 24885221 [Abstract] [Full Text] [Related]
15. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L, McCarthy EM, Ganko EW, McDonald JF. BMC Genomics; 2004 Mar 02; 5(1):18. PubMed ID: 15040813 [Abstract] [Full Text] [Related]
16. A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Kordis D. Gene; 2005 Mar 14; 347(2):161-73. PubMed ID: 15777633 [Abstract] [Full Text] [Related]
17. Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Neuvéglise C, Feldmann H, Bon E, Gaillardin C, Casaregola S. Genome Res; 2002 Jun 14; 12(6):930-43. PubMed ID: 12045146 [Abstract] [Full Text] [Related]
18. De novo identification of LTR retrotransposons in eukaryotic genomes. Rho M, Choi JH, Kim S, Lynch M, Tang H. BMC Genomics; 2007 Apr 03; 8():90. PubMed ID: 17407597 [Abstract] [Full Text] [Related]
19. Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Shalchian-Tabrizi K, Bråte J, Logares R, Klaveness D, Berney C, Jakobsen KS. Environ Microbiol; 2008 Oct 03; 10(10):2635-44. PubMed ID: 18643928 [Abstract] [Full Text] [Related]
20. Different classes of retrotransposons in coniferous spruce species. L'Homme Y, Séguin A, Tremblay FM. Genome; 2000 Dec 03; 43(6):1084-9. PubMed ID: 11195342 [Abstract] [Full Text] [Related] Page: [Next] [New Search]