These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 17211802
1. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. Loeschcke V, Hoffmann AA. Am Nat; 2007 Feb; 169(2):175-83. PubMed ID: 17211802 [Abstract] [Full Text] [Related]
2. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Norry FM, Scannapieco AC, Sambucetti P, Bertoli CI, Loeschcke V. Mol Ecol; 2008 Oct; 17(20):4570-81. PubMed ID: 18986501 [Abstract] [Full Text] [Related]
3. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS, Clusella-Trullas S, Deere JA, Chown SL. J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [Abstract] [Full Text] [Related]
4. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster. Milton CC, Partridge L. J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085 [Abstract] [Full Text] [Related]
5. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. Sgrò CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA. J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849 [Abstract] [Full Text] [Related]
6. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Overgaard J, Sørensen JG. Cryobiology; 2008 Apr; 56(2):159-62. PubMed ID: 18295194 [Abstract] [Full Text] [Related]
7. Post-eclosion decline in 'knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster. Pappas C, Hyde D, Bowler K, Loeschcke V, Sørensen JG. Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):355-9. PubMed ID: 17208027 [Abstract] [Full Text] [Related]
8. Complexity of the cold acclimation response in Drosophila melanogaster. Rako L, Hoffmann AA. J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412 [Abstract] [Full Text] [Related]
9. Life history consequences of temperature transients in Drosophila melanogaster. Dillon ME, Cahn LR, Huey RB. J Exp Biol; 2007 Aug; 210(Pt 16):2897-904. PubMed ID: 17690238 [Abstract] [Full Text] [Related]
10. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kostál V. J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492 [Abstract] [Full Text] [Related]
11. Linking inbreeding effects in captive populations with fitness in the wild: release of replicated Drosophila melanogaster lines under different temperatures. Kristensen TN, Loeschcke V, Hoffmann AA. Conserv Biol; 2008 Feb; 22(1):189-99. PubMed ID: 18254864 [Abstract] [Full Text] [Related]
12. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. Frazier MR, Harrison JF, Kirkton SD, Roberts SP. J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301 [Abstract] [Full Text] [Related]
13. Stress-induced plastic responses in Drosophila simulans following exposure to combinations of temperature and humidity levels. Bubliy OA, Kristensen TN, Loeschcke V. J Exp Biol; 2013 Dec 15; 216(Pt 24):4601-7. PubMed ID: 24072792 [Abstract] [Full Text] [Related]
14. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. David JR, Araripe LO, Chakir M, Legout H, Lemos B, Pétavy G, Rohmer C, Joly D, Moreteau B. J Evol Biol; 2005 Jul 15; 18(4):838-46. PubMed ID: 16033555 [Abstract] [Full Text] [Related]
15. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ. Physiol Biochem Zool; 2011 Jul 15; 84(6):543-52. PubMed ID: 22030847 [Abstract] [Full Text] [Related]
16. Physiological climatic limits in Drosophila: patterns and implications. Hoffmann AA. J Exp Biol; 2010 Mar 15; 213(6):870-80. PubMed ID: 20190112 [Abstract] [Full Text] [Related]
17. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density. Arias LN, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. J Exp Biol; 2012 Jul 01; 215(Pt 13):2220-5. PubMed ID: 22675182 [Abstract] [Full Text] [Related]
18. Evolution of total net fitness in thermal lines: Drosophila subobscura likes it 'warm'. Santos M. J Evol Biol; 2007 Nov 01; 20(6):2361-70. PubMed ID: 17956397 [Abstract] [Full Text] [Related]
19. Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. Hoffmann AA, Ratna E, Sgrò CM, Barton M, Blacket M, Hallas R, De Garis S, Weeks AR. J Evol Biol; 2007 Nov 01; 20(6):2219-27. PubMed ID: 17887974 [Abstract] [Full Text] [Related]
20. [Male sterility at high and low temperatures in Drosophila]. David JR. J Soc Biol; 2008 Nov 01; 202(2):113-7. PubMed ID: 18547508 [Abstract] [Full Text] [Related] Page: [Next] [New Search]