These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
505 related items for PubMed ID: 17211885
1. Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histones. Kobori T, Iwamoto S, Takeyasu K, Ohtani T. Biopolymers; 2007 Mar; 85(4):295-307. PubMed ID: 17211885 [Abstract] [Full Text] [Related]
2. Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Hizume K, Yoshimura SH, Takeyasu K. Biochemistry; 2005 Oct 04; 44(39):12978-89. PubMed ID: 16185066 [Abstract] [Full Text] [Related]
3. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Carruthers LM, Bednar J, Woodcock CL, Hansen JC. Biochemistry; 1998 Oct 20; 37(42):14776-87. PubMed ID: 9778352 [Abstract] [Full Text] [Related]
4. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. Huynh VA, Robinson PJ, Rhodes D. J Mol Biol; 2005 Feb 04; 345(5):957-68. PubMed ID: 15644197 [Abstract] [Full Text] [Related]
5. Core histone charge and linker histone H1 effects on the chromatin structure of Schizosaccharomyces pombe. Prieto E, Hizume K, Kobori T, Yoshimura SH, Takeyasu K. Biosci Biotechnol Biochem; 2012 Feb 04; 76(12):2261-6. PubMed ID: 23221705 [Abstract] [Full Text] [Related]
6. The structure of the nucleosome core particle of chromatin in chicken erythrocytes visualized by using atomic force microscopy. Zhao H, Zhang Y, Zhang SB, Jiang C, He QY, Li MQ, Qian RL. Cell Res; 1999 Dec 04; 9(4):255-60. PubMed ID: 10628834 [Abstract] [Full Text] [Related]
7. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Bennink ML, Leuba SH, Leno GH, Zlatanova J, de Grooth BG, Greve J. Nat Struct Biol; 2001 Jul 04; 8(7):606-10. PubMed ID: 11427891 [Abstract] [Full Text] [Related]
8. Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM). Qian RL, Liu ZX, Zhou MY, Xie HY, Jiang C, Yan ZJ, Li MQ, Zhang Y, Hu J. Cell Res; 1997 Dec 04; 7(2):143-50. PubMed ID: 9444393 [Abstract] [Full Text] [Related]
9. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array. Hizume K, Nakai T, Araki S, Prieto E, Yoshikawa K, Takeyasu K. Ultramicroscopy; 2009 Jul 04; 109(8):868-73. PubMed ID: 19328628 [Abstract] [Full Text] [Related]
10. Chromatin compaction at the mononucleosome level. Tóth K, Brun N, Langowski J. Biochemistry; 2006 Feb 14; 45(6):1591-8. PubMed ID: 16460006 [Abstract] [Full Text] [Related]
11. Nucleoplasmin-mediated unfolding of chromatin involves the displacement of linker-associated chromatin proteins. Ramos I, Prado A, Finn RM, Muga A, Ausió J. Biochemistry; 2005 Jun 14; 44(23):8274-81. PubMed ID: 15938617 [Abstract] [Full Text] [Related]
12. The in vitro reconstitution of nucleosome and its binding patterns with HMG1/2 and HMG14/17 proteins. Zhang SB, Huang J, Zhao H, Zhang Y, Hou CH, Cheng XD, Jiang C, Li MQ, Hu J, Qian RL. Cell Res; 2003 Oct 14; 13(5):351-9. PubMed ID: 14672558 [Abstract] [Full Text] [Related]
13. Visualization and analysis of chromatin by scanning force microscopy. Bustamante C, Zuccheri G, Leuba SH, Yang G, Samori B. Methods; 1997 May 14; 12(1):73-83. PubMed ID: 9169197 [Abstract] [Full Text] [Related]
14. Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics. Hizume K, Yoshimura SH, Takeyasu K. Cell Biochem Biophys; 2004 May 14; 40(3):249-61. PubMed ID: 15211026 [Abstract] [Full Text] [Related]
15. Major role of the histones H3-H4 in the folding of the chromatin fiber. Moore SC, Ausió J. Biochem Biophys Res Commun; 1997 Jan 03; 230(1):136-9. PubMed ID: 9020030 [Abstract] [Full Text] [Related]
16. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Suzuki Y, Higuchi Y, Hizume K, Yokokawa M, Yoshimura SH, Yoshikawa K, Takeyasu K. Ultramicroscopy; 2010 May 03; 110(6):682-8. PubMed ID: 20236766 [Abstract] [Full Text] [Related]
17. Counterion atmosphere and hydration patterns near a nucleosome core particle. Materese CK, Savelyev A, Papoian GA. J Am Chem Soc; 2009 Oct 21; 131(41):15005-13. PubMed ID: 19778017 [Abstract] [Full Text] [Related]
18. Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers. Leuba SH, Bustamante C, van Holde K, Zlatanova J. Biophys J; 1998 Jun 21; 74(6):2830-9. PubMed ID: 9635737 [Abstract] [Full Text] [Related]
19. [The type of interaction of histone H5 wo ith DNA changes significantly at various stages of chromatin condensation]. Pruss DV, Ebralidze KK, Mirzabekov AD. Mol Biol (Mosk); 1988 Jun 21; 22(4):1108-18. PubMed ID: 3185531 [Abstract] [Full Text] [Related]
20. Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40 nm structural unit. Kobori T, Kodama M, Hizume K, Yoshimura SH, Ohtani T, Takeyasu K. J Electron Microsc (Tokyo); 2006 Jan 21; 55(1):31-40. PubMed ID: 16495343 [Abstract] [Full Text] [Related] Page: [Next] [New Search]