These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 17220541
1. Nicotine potentiates imipramine-induced effects on catecholamine metabolism: possible relation to antidepressant activity. Antkiewicz-Michaluk L, Michaluk J, Romańska I, Popik P, Krawczyk M, Nalepa I, Vetulani J. Pharmacol Rep; 2006; 58(6):836-45. PubMed ID: 17220541 [Abstract] [Full Text] [Related]
2. Nicotine produces antidepressant-like actions: Behavioral and neurochemical evidence. Popik P, Krawczyk M, Kos T, Nalepa I, Kowalska M, Witarski T, Antkiewicz-Michaluk L, Vetulani J. Eur J Pharmacol; 2005 May 16; 515(1-3):128-33. PubMed ID: 15893747 [Abstract] [Full Text] [Related]
3. Studies on the participation of the dopaminergic system in the central effects of chronically administered antidepressant drugs. Kozyrska C, Zebrowska-Lupina I. Pol J Pharmacol Pharm; 1983 May 16; 35(2):115-26. PubMed ID: 6684769 [Abstract] [Full Text] [Related]
4. Antidepressant-like activity of the endogenous amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline in the behavioral despair test in the rat, and its neurochemical correlates: a comparison with the classical antidepressant, imipramine. Wąsik A, Możdżeń E, Romańska I, Michaluk J, Antkiewicz-Michaluk L. Eur J Pharmacol; 2013 Jan 30; 700(1-3):110-7. PubMed ID: 23246532 [Abstract] [Full Text] [Related]
5. Time-dependent effects of antidepressant drugs on the low dose of apomorphine-induced locomotor hypoactivity in rats. Dziedzicka-Wasylewska M, Rogóz Z. Pol J Pharmacol; 1997 Jan 30; 49(5):337-43. PubMed ID: 9566033 [Abstract] [Full Text] [Related]
6. Chronic antidepressant administration fails to attenuate apomorphine-induced decreases in rat striatal dopamine metabolites. Diggory GL, Buckett WR. Eur J Pharmacol; 1984 Oct 15; 105(3-4):257-63. PubMed ID: 6510470 [Abstract] [Full Text] [Related]
7. Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain. Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J. J Neural Transm (Vienna); 1997 Oct 15; 104(4-5):515-24. PubMed ID: 9295182 [Abstract] [Full Text] [Related]
8. Reversal of antidepressant-induced dopaminergic behavioural supersensitivity after long-term chronic imipramine withdrawal. D'Aquila PS, Peana AT, Panin F, Grixoni C, Cossu M, Serra G. Eur J Pharmacol; 2003 Jan 01; 458(1-2):129-34. PubMed ID: 12498916 [Abstract] [Full Text] [Related]
9. Acute effects of nomifensine on in vivo uptake and metabolism of dopamine, noradrenaline and serotonin in the rat brain. Broch OJ. Pharmacol Toxicol; 1987 Jan 01; 60(1):70-4. PubMed ID: 3562394 [Abstract] [Full Text] [Related]
10. Acute and chronic actions of a dry methanolic extract of Hypericum perforatum and a hyperforin-rich extract on dopaminergic and serotonergic neurones in rat nucleus accumbens. Rommelspacher H, Siemanowitz B, Mannel M. Pharmacopsychiatry; 2001 Jul 01; 34 Suppl 1():S119-26. PubMed ID: 11518060 [Abstract] [Full Text] [Related]
11. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. Cooper BR, Hester TJ, Maxwell RA. J Pharmacol Exp Ther; 1980 Oct 01; 215(1):127-34. PubMed ID: 6778989 [Abstract] [Full Text] [Related]
12. A comparison of the acute and chronic effects of four antidepressant drugs on the turnover of serotonin, dopamine and noradrenaline in the rat brain. Leonard BE, Kafoe WF. Biochem Pharmacol; 1976 Sep 01; 25(17):1939-42. PubMed ID: 985530 [No Abstract] [Full Text] [Related]
13. Study of a mechanism responsible for potential antidepressant activity of EMD 386088, a 5-HT6 partial agonist in rats. Jastrzębska-Więsek M, Siwek A, Partyka A, Antkiewicz-Michaluk L, Michaluk J, Romańska I, Kołaczkowski M, Wesołowska A. Naunyn Schmiedebergs Arch Pharmacol; 2016 Aug 01; 389(8):839-49. PubMed ID: 27106213 [Abstract] [Full Text] [Related]
14. Chronic imipramine administration reduces apomorphine inhibitory effects. Scavone C, Aizenstein ML, De Lucia R, Da Silva Planeta C. Eur J Pharmacol; 1986 Dec 16; 132(2-3):263-7. PubMed ID: 2434344 [Abstract] [Full Text] [Related]
15. Bupropion: a review of its mechanism of antidepressant activity. Ascher JA, Cole JO, Colin JN, Feighner JP, Ferris RM, Fibiger HC, Golden RN, Martin P, Potter WZ, Richelson E. J Clin Psychiatry; 1995 Sep 16; 56(9):395-401. PubMed ID: 7665537 [Abstract] [Full Text] [Related]
16. The effect of amitriptyline, desipramine and imipramine on the vivo brain synthesis of 3H-noradrenaline from 3H-L-dopa in the rat. Nielsen M, Eplov L, Scheel-Krüger J. Psychopharmacologia; 1975 Sep 16; 41(3):249-54. PubMed ID: 1098088 [Abstract] [Full Text] [Related]
17. Mirtazapine-induced corelease of dopamine and noradrenaline from noradrenergic neurons in the medial prefrontal and occipital cortex. Devoto P, Flore G, Pira L, Longu G, Gessa GL. Eur J Pharmacol; 2004 Mar 08; 487(1-3):105-11. PubMed ID: 15033381 [Abstract] [Full Text] [Related]
18. Catecholamine receptor agonists: effects on motor activity and rate of tyrosine hydroxylation in mouse brain. Strömbom U. Naunyn Schmiedebergs Arch Pharmacol; 1976 Mar 08; 292(2):167-76. PubMed ID: 181681 [Abstract] [Full Text] [Related]
19. Synergistic effect of imipramine and amantadine in the forced swimming test in rats. Behavioral and pharmacokinetic studies. Rogóz Z, Skuza G, Kuśmider M, Wójcikowski J, Kot M, Daniel WA. Pol J Pharmacol; 2004 Mar 08; 56(2):179-85. PubMed ID: 15156068 [Abstract] [Full Text] [Related]
20. Repeated treatment with antidepressant drugs increases the behavioural response to apomorphine. Maj J, Rogóz Z, Skuza G, Sowińska H. J Neural Transm; 1984 Mar 08; 60(3-4):273-82. PubMed ID: 6241227 [Abstract] [Full Text] [Related] Page: [Next] [New Search]