These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


743 related items for PubMed ID: 17223028

  • 1. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding.
    Yang N, Su X, Tjong V, Knoll W.
    Biosens Bioelectron; 2007 May 15; 22(11):2700-6. PubMed ID: 17223028
    [Abstract] [Full Text] [Related]

  • 2. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization.
    Su X, Wu YJ, Knoll W.
    Biosens Bioelectron; 2005 Nov 15; 21(5):719-26. PubMed ID: 16242610
    [Abstract] [Full Text] [Related]

  • 3. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens.
    Oh BK, Lee W, Chun BS, Bae YM, Lee WH, Choi JW.
    Biosens Bioelectron; 2005 Mar 15; 20(9):1847-50. PubMed ID: 15681203
    [Abstract] [Full Text] [Related]

  • 4. SPR study of DNA hybridization with DNA and PNA probes under stringent conditions.
    Lao AI, Su X, Aung KM.
    Biosens Bioelectron; 2009 Feb 15; 24(6):1717-22. PubMed ID: 19010658
    [Abstract] [Full Text] [Related]

  • 5. Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique.
    Ananthanawat C, Vilaivan T, Hoven VP, Su X.
    Biosens Bioelectron; 2010 Jan 15; 25(5):1064-9. PubMed ID: 19864125
    [Abstract] [Full Text] [Related]

  • 6. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
    Su X, Wu YJ, Robelek R, Knoll W.
    Langmuir; 2005 Jan 04; 21(1):348-53. PubMed ID: 15620323
    [Abstract] [Full Text] [Related]

  • 7. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization.
    Malic L, Veres T, Tabrizian M.
    Biosens Bioelectron; 2009 Mar 15; 24(7):2218-24. PubMed ID: 19136248
    [Abstract] [Full Text] [Related]

  • 8. Liquid phase SPR imaging experiments for biosensors applications.
    Rella R, Spadavecchia J, Manera MG, Siciliano P, Santino A, Mita G.
    Biosens Bioelectron; 2004 Dec 15; 20(6):1140-8. PubMed ID: 15556360
    [Abstract] [Full Text] [Related]

  • 9. Double-wavelength technique for surface plasmon resonance measurements: basic concept and applications for single sensors and two-dimensional sensor arrays.
    Zybin A, Grunwald C, Mirsky VM, Kuhlmann J, Wolfbeis OS, Niemax K.
    Anal Chem; 2005 Apr 15; 77(8):2393-9. PubMed ID: 15828772
    [Abstract] [Full Text] [Related]

  • 10. DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge.
    Ladd J, Boozer C, Yu Q, Chen S, Homola J, Jiang S.
    Langmuir; 2004 Sep 14; 20(19):8090-5. PubMed ID: 15350077
    [Abstract] [Full Text] [Related]

  • 11. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions.
    Pollet J, Delport F, Janssen KP, Jans K, Maes G, Pfeiffer H, Wevers M, Lammertyn J.
    Biosens Bioelectron; 2009 Dec 15; 25(4):864-9. PubMed ID: 19775884
    [Abstract] [Full Text] [Related]

  • 12. Immobilisation of DNA probes for the development of SPR-based sensing.
    Wang R, Tombelli S, Minunni M, Spiriti MM, Mascini M.
    Biosens Bioelectron; 2004 Nov 15; 20(5):967-74. PubMed ID: 15530793
    [Abstract] [Full Text] [Related]

  • 13. Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method.
    Vaisocherová H, Zítová A, Lachmanová M, Stepánek J, Králíková S, Liboska R, Rejman D, Rosenberg I, Homola J.
    Biopolymers; 2006 Jul 15; 82(4):394-8. PubMed ID: 16365848
    [Abstract] [Full Text] [Related]

  • 14. Comparison of different supramolecular architectures for oligonucleotide biosensing.
    Mir M, Alvarez M, Azzaroni O, Knoll W.
    Langmuir; 2008 Nov 18; 24(22):13001-6. PubMed ID: 18947242
    [Abstract] [Full Text] [Related]

  • 15. Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy.
    Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT.
    Anal Chem; 2004 Feb 15; 76(4):918-29. PubMed ID: 14961721
    [Abstract] [Full Text] [Related]

  • 16. Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor.
    Kukanskis K, Elkind J, Melendez J, Murphy T, Miller G, Garner H.
    Anal Biochem; 1999 Oct 01; 274(1):7-17. PubMed ID: 10527491
    [Abstract] [Full Text] [Related]

  • 17. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy.
    Shumaker-Parry JS, Aebersold R, Campbell CT.
    Anal Chem; 2004 Apr 01; 76(7):2071-82. PubMed ID: 15053673
    [Abstract] [Full Text] [Related]

  • 18. Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging.
    Wong CL, Ho HP, Suen YK, Kong SK, Chen QL, Yuan W, Wu SY.
    Biosens Bioelectron; 2008 Dec 01; 24(4):606-12. PubMed ID: 18644712
    [Abstract] [Full Text] [Related]

  • 19. Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays.
    Yuk JS, Jung JW, Jung SH, Han JA, Kim YM, Ha KS.
    Biosens Bioelectron; 2005 May 15; 20(11):2189-96. PubMed ID: 15797315
    [Abstract] [Full Text] [Related]

  • 20. Surface plasmon resonance-enabled mass spectrometry arrays.
    Nedelkov D, Tubbs KA, Nelson RW.
    Electrophoresis; 2006 Sep 15; 27(18):3671-5. PubMed ID: 16915566
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.