These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


98 related items for PubMed ID: 1722424

  • 1. How does ppGpp affect translational accuracy in the stringent response?
    Rojas AM, Ehrenberg M.
    Biochimie; 1991 May; 73(5):599-605. PubMed ID: 1722424
    [Abstract] [Full Text] [Related]

  • 2. Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation.
    Dix DB, Thompson RC.
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2027-31. PubMed ID: 3515344
    [Abstract] [Full Text] [Related]

  • 3. Effect of ppGpp on the accuracy of protein biosynthesis.
    Dix DB, Thompson RC, Mackow ER, Chang FN.
    Arch Biochem Biophys; 1983 May; 223(1):319-24. PubMed ID: 6344795
    [Abstract] [Full Text] [Related]

  • 4. Template-independent synthesis of guanosine tetra- and pentaphosphates on ribosomes.
    Belitsina NV, Klyachko EV, Shakulov RS.
    FEBS Lett; 1983 Oct 03; 162(1):39-42. PubMed ID: 6352335
    [Abstract] [Full Text] [Related]

  • 5. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis.
    Rojas AM, Ehrenberg M, Andersson SG, Kurland CG.
    Mol Gen Genet; 1984 Oct 03; 197(1):36-45. PubMed ID: 6392824
    [Abstract] [Full Text] [Related]

  • 6. In vitro analysis of translational rate and accuracy with an unmodified tRNA.
    Harrington KM, Nazarenko IA, Dix DB, Thompson RC, Uhlenbeck OC.
    Biochemistry; 1993 Aug 03; 32(30):7617-22. PubMed ID: 7688564
    [Abstract] [Full Text] [Related]

  • 7. How the initiating ribosome copes with ppGpp to translate mRNAs.
    Vinogradova DS, Zegarra V, Maksimova E, Nakamoto JA, Kasatsky P, Paleskava A, Konevega AL, Milón P.
    PLoS Biol; 2020 Jan 03; 18(1):e3000593. PubMed ID: 31995552
    [Abstract] [Full Text] [Related]

  • 8. The suppression of defective translation by ppGpp and its role in the stringent response.
    O'Farrell PH.
    Cell; 1978 Jul 03; 14(3):545-57. PubMed ID: 357011
    [Abstract] [Full Text] [Related]

  • 9. Kinetic suppression of translational errors by (p)ppGpp.
    Wagner EG, Ehrenberg M, Kurland CG.
    Mol Gen Genet; 1982 Jul 03; 185(2):269-74. PubMed ID: 7045583
    [Abstract] [Full Text] [Related]

  • 10. High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli.
    Sørensen MA, Jensen KF, Pedersen S.
    J Mol Biol; 1994 Feb 18; 236(2):441-54. PubMed ID: 7508988
    [Abstract] [Full Text] [Related]

  • 11. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV, Wintermeyer W.
    Proc Natl Acad Sci U S A; 1995 Mar 14; 92(6):1945-9. PubMed ID: 7892205
    [Abstract] [Full Text] [Related]

  • 12. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems.
    Chinali G, Nyssen E, Di Giambattista M, Cocito C.
    Biochim Biophys Acta; 1988 Nov 10; 951(1):42-52. PubMed ID: 3142522
    [Abstract] [Full Text] [Related]

  • 13. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R, Krab IM, Anborgh PH, Cool RH, Watanabe T, Sugiyama T, Izaki K, Parmeggiani A.
    EMBO J; 1996 May 15; 15(10):2604-11. PubMed ID: 8665868
    [Abstract] [Full Text] [Related]

  • 14. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
    Pape T, Wintermeyer W, Rodnina M.
    EMBO J; 1999 Jul 01; 18(13):3800-7. PubMed ID: 10393195
    [Abstract] [Full Text] [Related]

  • 15. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu.
    Hunter SE, Spremulli LL.
    Biochim Biophys Acta; 2004 Jun 01; 1699(1-2):173-82. PubMed ID: 15158725
    [Abstract] [Full Text] [Related]

  • 16. Inhibition by elongation factor EF G of aminoacyl-tRNA binding to ribosomes.
    Cabrer B, Vázquez D, Modolell J.
    Proc Natl Acad Sci U S A; 1972 Mar 01; 69(3):733-6. PubMed ID: 4551985
    [Abstract] [Full Text] [Related]

  • 17. Translational activities of EF-Tu [G222D] which cannot be reconciled with the classical scheme of the polypeptide chain elongation cycle.
    Talens A, Boon K, Kraal B, Bosch L.
    Biochem Biophys Res Commun; 1996 Aug 23; 225(3):961-7. PubMed ID: 8780718
    [Abstract] [Full Text] [Related]

  • 18. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH.
    Mol Cell; 2002 Oct 23; 10(4):779-88. PubMed ID: 12419222
    [Abstract] [Full Text] [Related]

  • 19. Escherichia coli stringent factor binds to ribosomes at a site different from that of elongation factor Tu or G.
    Richter D, Nowak P, Kleinert U.
    Biochemistry; 1975 Oct 07; 14(20):4414-20. PubMed ID: 1100104
    [Abstract] [Full Text] [Related]

  • 20. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE, Spremulli LL.
    Biochemistry; 2004 Jun 08; 43(22):6917-27. PubMed ID: 15170329
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.