These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


434 related items for PubMed ID: 17227795

  • 21. A trypanosome structure involved in transmitting cytoplasmic information during cell division.
    Moreira-Leite FF, Sherwin T, Kohl L, Gull K.
    Science; 2001 Oct 19; 294(5542):610-2. PubMed ID: 11641501
    [Abstract] [Full Text] [Related]

  • 22. Evidence for a sliding-resistance at the tip of the trypanosome flagellum.
    Woolley D, Gadelha C, Gull K.
    Cell Motil Cytoskeleton; 2006 Dec 19; 63(12):741-6. PubMed ID: 17009329
    [Abstract] [Full Text] [Related]

  • 23. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins.
    Thomas NA, Jarrell KF.
    J Bacteriol; 2001 Dec 19; 183(24):7154-64. PubMed ID: 11717274
    [Abstract] [Full Text] [Related]

  • 24. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei.
    Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K.
    Protist; 2008 Jan 19; 159(1):127-36. PubMed ID: 17945531
    [Abstract] [Full Text] [Related]

  • 25. The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi.
    Lustig Y, Goldshmidt H, Uliel S, Michaeli S.
    J Cell Sci; 2005 Oct 01; 118(Pt 19):4551-62. PubMed ID: 16179612
    [Abstract] [Full Text] [Related]

  • 26. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids.
    Casanova M, Crobu L, Blaineau C, Bourgeois N, Bastien P, Pagès M.
    Mol Microbiol; 2009 Mar 01; 71(6):1353-70. PubMed ID: 19183280
    [Abstract] [Full Text] [Related]

  • 27. TFPP: an SVM-based tool for recognizing flagellar proteins in Trypanosoma brucei.
    Zhang X, Shen Y, Ding G, Tian Y, Liu Z, Li B, Wang Y, Jiang C.
    PLoS One; 2013 Mar 01; 8(1):e54032. PubMed ID: 23349782
    [Abstract] [Full Text] [Related]

  • 28. Tools for analyzing intraflagellar transport in trypanosomes.
    Julkowska D, Bastin P.
    Methods Cell Biol; 2009 Mar 01; 93():59-80. PubMed ID: 20409811
    [Abstract] [Full Text] [Related]

  • 29. Functional genomics of the cilium, a sensory organelle.
    Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C, Warner A, Khattra J, Holt RA, Ou G, Mah AK, McKay SJ, Huang P, Swoboda P, Jones SJ, Marra MA, Baillie DL, Moerman DG, Shaham S, Leroux MR.
    Curr Biol; 2005 May 24; 15(10):935-41. PubMed ID: 15916950
    [Abstract] [Full Text] [Related]

  • 30. The small ubiquitin-like modifier (SUMO) is essential in cell cycle regulation in Trypanosoma brucei.
    Liao S, Wang T, Fan K, Tu X.
    Exp Cell Res; 2010 Mar 10; 316(5):704-15. PubMed ID: 20045687
    [Abstract] [Full Text] [Related]

  • 31. The flagellum of trypanosomes.
    Kohl L, Bastin P.
    Int Rev Cytol; 2005 Mar 10; 244():227-85. PubMed ID: 16157182
    [Abstract] [Full Text] [Related]

  • 32. Structural analysis of flagellar axonemes from inner arm dynein knockdown strains of Trypanosoma brucei.
    Zukas R, Chang AJ, Rice M, Springer AL.
    Biocell; 2012 Dec 10; 36(3):133-41. PubMed ID: 23682429
    [Abstract] [Full Text] [Related]

  • 33. APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei.
    Vélez-Ramírez DE, Shimogawa MM, Ray SS, Lopez A, Rayatpisheh S, Langousis G, Gallagher-Jones M, Dean S, Wohlschlegel JA, Hill KL.
    mSphere; 2021 Feb 10; 6(1):. PubMed ID: 33568455
    [Abstract] [Full Text] [Related]

  • 34. The flagellum of Trypanosoma brucei: new tricks from an old dog.
    Ralston KS, Hill KL.
    Int J Parasitol; 2008 Jul 10; 38(8-9):869-84. PubMed ID: 18472102
    [Abstract] [Full Text] [Related]

  • 35. TbAGO1, an argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei.
    Durand-Dubief M, Bastin P.
    BMC Biol; 2003 Dec 12; 1():2. PubMed ID: 14670085
    [Abstract] [Full Text] [Related]

  • 36. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes.
    Absalon S, Blisnick T, Kohl L, Toutirais G, Doré G, Julkowska D, Tavenet A, Bastin P.
    Mol Biol Cell; 2008 Mar 12; 19(3):929-44. PubMed ID: 18094047
    [Abstract] [Full Text] [Related]

  • 37. Deoxyhypusine Modification of Eukaryotic Translation Initiation Factor 5A (eIF5A) Is Essential for Trypanosoma brucei Growth and for Expression of Polyprolyl-containing Proteins.
    Nguyen S, Leija C, Kinch L, Regmi S, Li Q, Grishin NV, Phillips MA.
    J Biol Chem; 2015 Aug 07; 290(32):19987-98. PubMed ID: 26082486
    [Abstract] [Full Text] [Related]

  • 38. Membrane protein SMP-1 is required for normal flagellum function in Leishmania.
    Tull D, Naderer T, Spurck T, Mertens HD, Heng J, McFadden GI, Gooley PR, McConville MJ.
    J Cell Sci; 2010 Feb 15; 123(Pt 4):544-54. PubMed ID: 20086045
    [Abstract] [Full Text] [Related]

  • 39. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei.
    Hung CH, Qiao X, Lee PT, Lee MG.
    Eukaryot Cell; 2004 Aug 15; 3(4):1004-14. PubMed ID: 15302833
    [Abstract] [Full Text] [Related]

  • 40. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.
    Keller LC, Romijn EP, Zamora I, Yates JR, Marshall WF.
    Curr Biol; 2005 Jun 21; 15(12):1090-8. PubMed ID: 15964273
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.