These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 17229823

  • 1. Physiologically based controller for generating overground locomotion using functional electrical stimulation.
    Guevremont L, Norton JA, Mushahwar VK.
    J Neurophysiol; 2007 Mar; 97(3):2499-510. PubMed ID: 17229823
    [Abstract] [Full Text] [Related]

  • 2. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.
    Mushahwar VK, Gillard DM, Gauthier MJ, Prochazka A.
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):68-81. PubMed ID: 12173741
    [Abstract] [Full Text] [Related]

  • 3. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B, Guevremont L, Mushahwar VK.
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [Abstract] [Full Text] [Related]

  • 4. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R.
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [Abstract] [Full Text] [Related]

  • 5. Intraspinal microstimulation generates functional movements after spinal-cord injury.
    Saigal R, Renzi C, Mushahwar VK.
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):430-40. PubMed ID: 15614999
    [Abstract] [Full Text] [Related]

  • 6. Feed forward and feedback control for over-ground locomotion in anaesthetized cats.
    Mazurek KA, Holinski BJ, Everaert DG, Stein RB, Etienne-Cummings R, Mushahwar VK.
    J Neural Eng; 2012 Apr; 9(2):026003. PubMed ID: 22328615
    [Abstract] [Full Text] [Related]

  • 7. Stumbling corrective reaction during fictive locomotion in the cat.
    Quevedo J, Stecina K, Gosgnach S, McCrea DA.
    J Neurophysiol; 2005 Sep; 94(3):2045-52. PubMed ID: 15917325
    [Abstract] [Full Text] [Related]

  • 8. Feedback control methods for task regulation by electrical stimulation of muscles.
    Lan N, Crago PE, Chizeck HJ.
    IEEE Trans Biomed Eng; 1991 Dec; 38(12):1213-23. PubMed ID: 1774083
    [Abstract] [Full Text] [Related]

  • 9. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F, Drew T.
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [Abstract] [Full Text] [Related]

  • 10. Limb-state feedback from ensembles of simultaneously recorded dorsal root ganglion neurons.
    Weber DJ, Stein RB, Everaert DG, Prochazka A.
    J Neural Eng; 2007 Sep; 4(3):S168-80. PubMed ID: 17873416
    [Abstract] [Full Text] [Related]

  • 11. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O, Pearson K.
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [Abstract] [Full Text] [Related]

  • 12. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats.
    Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR.
    J Neurophysiol; 2007 Nov; 98(5):2525-36. PubMed ID: 17855582
    [Abstract] [Full Text] [Related]

  • 13. Intraspinal microstimulation produces over-ground walking in anesthetized cats.
    Holinski BJ, Mazurek KA, Everaert DG, Toossi A, Lucas-Osma AM, Troyk P, Etienne-Cummings R, Stein RB, Mushahwar VK.
    J Neural Eng; 2016 Oct; 13(5):056016. PubMed ID: 27619069
    [Abstract] [Full Text] [Related]

  • 14. Modularity of motor output evoked by intraspinal microstimulation in cats.
    Lemay MA, Grill WM.
    J Neurophysiol; 2004 Jan; 91(1):502-14. PubMed ID: 14523079
    [Abstract] [Full Text] [Related]

  • 15. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity.
    Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR.
    Hum Mov Sci; 2007 Apr; 26(2):275-95. PubMed ID: 17343947
    [Abstract] [Full Text] [Related]

  • 16. Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat.
    Frigon A, Rossignol S.
    J Neurophysiol; 2008 Feb; 99(2):989-98. PubMed ID: 18094100
    [Abstract] [Full Text] [Related]

  • 17. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP, Crago PE.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [Abstract] [Full Text] [Related]

  • 18. Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
    Langlet C, Leblond H, Rossignol S.
    J Neurophysiol; 2005 May; 93(5):2474-88. PubMed ID: 15647400
    [Abstract] [Full Text] [Related]

  • 19. Electrically evoked locomotor activity in the turtle spinal cord hemi-enlargement preparation.
    Samara RF, Currie SN.
    Neurosci Lett; 2008 Aug 15; 441(1):105-9. PubMed ID: 18597937
    [Abstract] [Full Text] [Related]

  • 20. Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord.
    Gerasimenko YP, Lavrov IA, Bogacheva IN, Shcherbakova NA, Kucher VI, Musienko PE.
    Neurosci Behav Physiol; 2005 Mar 15; 35(3):291-8. PubMed ID: 15875491
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.