These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


261 related items for PubMed ID: 17234205

  • 21. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kostál V.
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [Abstract] [Full Text] [Related]

  • 22. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster.
    Overgaard J, Sørensen JG.
    Cryobiology; 2008 Apr; 56(2):159-62. PubMed ID: 18295194
    [Abstract] [Full Text] [Related]

  • 23. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae).
    Marais E, Terblanche JS, Chown SL.
    J Insect Physiol; 2009 Apr; 55(4):336-43. PubMed ID: 19171152
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.
    Wang H, Lei Z, Li X, Oetting RD.
    Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M, Vijendravarma RK, Schwaller G, Kawecki TJ.
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [Abstract] [Full Text] [Related]

  • 30. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR, Harrison JF, Kirkton SD, Roberts SP.
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis.
    Li A, Denlinger DL.
    Insect Mol Biol; 2008 Sep; 17(5):565-72. PubMed ID: 18828842
    [Abstract] [Full Text] [Related]

  • 34. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster.
    Hoffmann AA, Hallas R, Anderson AR, Telonis-Scott M.
    J Evol Biol; 2005 Jul; 18(4):804-10. PubMed ID: 16033551
    [Abstract] [Full Text] [Related]

  • 35. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L, Hoffmann AA.
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster.
    Le Bourg E.
    Biogerontology; 2007 Aug; 8(4):431-44. PubMed ID: 17318365
    [Abstract] [Full Text] [Related]

  • 40. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis.
    Huang LH, Chen B, Kang L.
    J Insect Physiol; 2007 Dec; 53(12):1199-205. PubMed ID: 17651748
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.