These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 17239396

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M, Ito N, Tsumuraya T, Suzuki K, Sakakura M, Fujii I.
    J Mol Biol; 2007 May 25; 369(1):198-209. PubMed ID: 17428500
    [Abstract] [Full Text] [Related]

  • 3. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I.
    J Mol Biol; 1997 Apr 18; 267(5):1247-57. PubMed ID: 9150409
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Molecular mechanisms of improvement of hydrolytic antibody 6D9 by site-directed mutagenesis.
    Takahashi-Ando N, Shimazaki K, Kakinuma H, Fujii I, Nishi Y.
    J Biochem; 2006 Oct 18; 140(4):509-15. PubMed ID: 16921165
    [Abstract] [Full Text] [Related]

  • 7. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N, Kakinuma H, Liu L, Nishi Y, Fujii I.
    Nat Biotechnol; 2001 Jun 18; 19(6):563-7. PubMed ID: 11385462
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Binding site optimisation for artificial enzymes by diffusion NMR of small molecules.
    Atkinson CE, Aliev AE, Motherwell WB.
    Chemistry; 2003 Apr 14; 9(8):1714-23. PubMed ID: 12698429
    [Abstract] [Full Text] [Related]

  • 12. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ, Houk KN.
    J Comput Chem; 2002 Jan 15; 23(1):84-95. PubMed ID: 11913392
    [Abstract] [Full Text] [Related]

  • 13. Effects of substrate conformational strain on binding kinetics of catalytic antibodies.
    Oda M, Tsumuraya T, Fujii I.
    Biophys Physicobiol; 2016 Jan 15; 13():135-138. PubMed ID: 27924267
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Theoretical investigation of the origins of catalysis of a retro-Diels-Alder reaction by antibody 10F11.
    Leach AG, Houk KN, Reymond JL.
    J Org Chem; 2004 May 28; 69(11):3683-92. PubMed ID: 15152997
    [Abstract] [Full Text] [Related]

  • 17. Probing the importance of second sphere residues in an esterolytic antibody by phage display.
    Arkin MR, Wells JA.
    J Mol Biol; 1998 Dec 11; 284(4):1083-94. PubMed ID: 9837728
    [Abstract] [Full Text] [Related]

  • 18. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC, Hanson MA, Varvak A, Ulrich H, Schultz PG, Stevens RC.
    Biochemistry; 2000 Feb 01; 39(4):627-32. PubMed ID: 10651626
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.