These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Abdenur JE, Abeling N, Specola N, Jorge L, Schenone AB, van Cruchten AC, Chamoles NA. Mol Genet Metab; 2006 Jan; 87(1):48-53. PubMed ID: 16288991 [Abstract] [Full Text] [Related]
4. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Brun L, Ngu LH, Keng WT, Ch'ng GS, Choy YS, Hwu WL, Lee WT, Willemsen MA, Verbeek MM, Wassenberg T, Régal L, Orcesi S, Tonduti D, Accorsi P, Testard H, Abdenur JE, Tay S, Allen GF, Heales S, Kern I, Kato M, Burlina A, Manegold C, Hoffmann GF, Blau N. Neurology; 2010 Jul 06; 75(1):64-71. PubMed ID: 20505134 [Abstract] [Full Text] [Related]
5. Effect of pyridoxal phosphate deficiency on aromatic L-amino acid decarboxylase activity with L-DOPA and L-5-hydroxytryptophan as substrates in rats. Rahman MK, Nagatsu T, Sakurai T, Hori S, Abe M, Matsuda M. Jpn J Pharmacol; 1982 Oct 06; 32(5):803-11. PubMed ID: 6983619 [Abstract] [Full Text] [Related]
6. Diagnosis of aromatic L-amino acid decarboxylase deficiency by measuring 3-O-methyldopa concentrations in dried blood spots. Chen PW, Lee NC, Chien YH, Wu JY, Wang PC, Hwu WL. Clin Chim Acta; 2014 Apr 20; 431():19-22. PubMed ID: 24513538 [Abstract] [Full Text] [Related]
7. Prevalence of Aromatic l-Amino Acid Decarboxylase Deficiency in At-Risk Populations. Hyland K, Reott M. Pediatr Neurol; 2020 May 20; 106():38-42. PubMed ID: 32111562 [Abstract] [Full Text] [Related]
9. Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies. Fiumara A, Bräutigam C, Hyland K, Sharma R, Lagae L, Stoltenborg B, Hoffmann GF, Jaeken J, Wevers RA. Neuropediatrics; 2002 Aug 20; 33(4):203-8. PubMed ID: 12368991 [Abstract] [Full Text] [Related]
10. Anesthesia management in a young child with aromatic l-amino acid decarboxylase deficiency. Vutskits L, Menache C, Manzano S, Haenggeli CA, Habre W. Paediatr Anaesth; 2006 Jan 20; 16(1):82-4. PubMed ID: 16409536 [Abstract] [Full Text] [Related]
11. Detection of 3-O-methyldopa in dried blood spots for neonatal diagnosis of aromatic L-amino-acid decarboxylase deficiency: The northeastern Italian experience. Burlina A, Giuliani A, Polo G, Gueraldi D, Gragnaniello V, Cazzorla C, Opladen T, Hoffmann G, Blau N, Burlina AP. Mol Genet Metab; 2021 May 20; 133(1):56-62. PubMed ID: 33744095 [Abstract] [Full Text] [Related]
12. Adeno-associated virus-mediated gene transfer of human aromatic L-amino acid decarboxylase protects mixed striatal primary cultures from L-DOPA toxicity. Doroudchi MM, Liauw J, Heaton K, Zhen Z, Forsayeth JR. J Neurochem; 2005 May 20; 93(3):634-40. PubMed ID: 15836622 [Abstract] [Full Text] [Related]
13. Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Pons R, Ford B, Chiriboga CA, Clayton PT, Hinton V, Hyland K, Sharma R, De Vivo DC. Neurology; 2004 Apr 13; 62(7):1058-65. PubMed ID: 15079002 [Abstract] [Full Text] [Related]
14. Presence of endogenous inhibitor of aromatic L-amino acid decarboxylase in monkey serum. Rahman MK, Togari A, Kojima K, Takahashi K, Nagatsu T. Mol Cell Biochem; 1984 Aug 13; 63(1):53-8. PubMed ID: 6333583 [Abstract] [Full Text] [Related]
15. Aromatic L-amino acid decarboxylase: conformational change in the flexible region around Arg334 is required during the transaldimination process. Ishii S, Hayashi H, Okamoto A, Kagamiyama H. Protein Sci; 1998 Aug 13; 7(8):1802-10. PubMed ID: 10082378 [Abstract] [Full Text] [Related]
16. Aromatic L-amino acid decarboxylase deficiency in Taiwan. Lee HF, Tsai CR, Chi CS, Chang TM, Lee HJ. Eur J Paediatr Neurol; 2009 Mar 13; 13(2):135-40. PubMed ID: 18567514 [Abstract] [Full Text] [Related]
17. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a second family. Maller A, Hyland K, Milstien S, Biaggioni I, Butler IJ. J Child Neurol; 1997 Sep 13; 12(6):349-54. PubMed ID: 9309516 [Abstract] [Full Text] [Related]
18. Phenotypic changes of AADC-only-immunoreactive cells in the alimentary canal of the laboratory shrew, Suncus murinus, induced by systemic administration of monoamine precursors. Sakai K, Nomura R, Hasegawa Y, Sinzato M, Nishii K, Katoh Y, Yamada K. Okajimas Folia Anat Jpn; 2015 Sep 13; 92(2):43-7. PubMed ID: 26639565 [Abstract] [Full Text] [Related]
19. Clinical Metabolomics to Segregate Aromatic Amino Acid Decarboxylase Deficiency From Drug-Induced Metabolite Elevations. Pappan KL, Kennedy AD, Magoulas PL, Hanchard NA, Sun Q, Elsea SH. Pediatr Neurol; 2017 Oct 13; 75():66-72. PubMed ID: 28823629 [Abstract] [Full Text] [Related]
20. Simultaneous measurement of monoamine metabolites and 5-methyltetrahydrofolate in the cerebrospinal fluid of children. Akiyama T, Hayashi Y, Hanaoka Y, Shibata T, Akiyama M, Nakamura K, Tsuyusaki Y, Kubota M, Yoshinaga H, Kobayashi K. Clin Chim Acta; 2017 Feb 13; 465():5-10. PubMed ID: 27940130 [Abstract] [Full Text] [Related] Page: [Next] [New Search]