These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
328 related items for PubMed ID: 17242002
1. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Cavender-Bares J, Sack L, Savage J. Tree Physiol; 2007 Apr; 27(4):611-20. PubMed ID: 17242002 [Abstract] [Full Text] [Related]
2. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO, Schmidt MW, Kurz-Besson C, Lobo Do Vale R, Pereira JS, Tenhunen JD. Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [Abstract] [Full Text] [Related]
3. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ, Carlo N, Clark KL, Schäfer KV. Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [Abstract] [Full Text] [Related]
4. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS. Tree Physiol; 2007 Jun; 27(6):793-803. PubMed ID: 17331898 [Abstract] [Full Text] [Related]
9. Populus species from diverse habitats maintain high night-time conductance under drought. Cirelli D, Equiza MA, Lieffers VJ, Tyree MT. Tree Physiol; 2016 Feb; 36(2):229-42. PubMed ID: 26420792 [Abstract] [Full Text] [Related]
13. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M, Pereira JS, Gazarini LC, David TS, David JS, Rodrigues A, Maroco J, Chaves MM. Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [Abstract] [Full Text] [Related]
16. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Zeppel M, Tissue D, Taylor D, Macinnis-Ng C, Eamus D. Tree Physiol; 2010 Aug; 30(8):988-1000. PubMed ID: 20566582 [Abstract] [Full Text] [Related]
17. Cold air drainage and modeled nocturnal leaf water potential in complex forested terrain. Hubbart JA, Kavanagh KL, Pangle R, Link T, Schotzko A. Tree Physiol; 2007 Apr; 27(4):631-9. PubMed ID: 17242004 [Abstract] [Full Text] [Related]
18. Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Martínez-Vilalta J, Mangirón M, Ogaya R, Sauret M, Serrano L, Peñuelas J, Piñol J. Tree Physiol; 2003 Aug; 23(11):747-58. PubMed ID: 12839728 [Abstract] [Full Text] [Related]
19. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY, Greer DH, Hatfield JM, Hutton RJ, Clarke SJ, Hutchinson PA, Somers A. Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [Abstract] [Full Text] [Related]