These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


707 related items for PubMed ID: 17244532

  • 1. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FT, Bukau B, Mogk A.
    Mol Cell; 2007 Jan 26; 25(2):247-60. PubMed ID: 17244532
    [Abstract] [Full Text] [Related]

  • 2. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y, Klostermeier D, Herrmann C, Veit T, Seidel R, Reinstein J.
    J Mol Biol; 2001 Feb 02; 305(5):1173-83. PubMed ID: 11162122
    [Abstract] [Full Text] [Related]

  • 3. Novel insights into the mechanism of chaperone-assisted protein disaggregation.
    Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B.
    Biol Chem; 2005 Aug 02; 386(8):739-44. PubMed ID: 16201868
    [Abstract] [Full Text] [Related]

  • 4. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S, Groemping Y, Herde P, Seidel R, Reinstein J.
    J Mol Biol; 2001 Mar 02; 306(4):889-99. PubMed ID: 11243796
    [Abstract] [Full Text] [Related]

  • 5. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB.
    Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FT, Mogk A, Bukau B.
    Cell; 2004 Nov 24; 119(5):653-65. PubMed ID: 15550247
    [Abstract] [Full Text] [Related]

  • 6. Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity.
    Watanabe YH, Nakazaki Y, Suno R, Yoshida M.
    Biochem J; 2009 Jun 12; 421(1):71-7. PubMed ID: 19351326
    [Abstract] [Full Text] [Related]

  • 7. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.
    Yamasaki T, Nakazaki Y, Yoshida M, Watanabe YH.
    FEBS J; 2011 Jul 12; 278(13):2395-403. PubMed ID: 21554542
    [Abstract] [Full Text] [Related]

  • 8. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments.
    Haslberger T, Zdanowicz A, Brand I, Kirstein J, Turgay K, Mogk A, Bukau B.
    Nat Struct Mol Biol; 2008 Jun 12; 15(6):641-50. PubMed ID: 18488042
    [Abstract] [Full Text] [Related]

  • 9. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y, Reinstein J.
    J Mol Biol; 2001 Nov 16; 314(1):167-78. PubMed ID: 11724541
    [Abstract] [Full Text] [Related]

  • 10. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J, Sha B.
    J Mol Biol; 2002 May 10; 318(4):1127-37. PubMed ID: 12054807
    [Abstract] [Full Text] [Related]

  • 11. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli.
    Kedzierska S, Chesnokova LS, Witt SN, Zolkiewski M.
    Arch Biochem Biophys; 2005 Dec 01; 444(1):61-5. PubMed ID: 16289019
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli.
    Kim KI, Cheong GW, Park SC, Ha JS, Woo KM, Choi SJ, Chung CH.
    J Mol Biol; 2000 Nov 10; 303(5):655-66. PubMed ID: 11061966
    [Abstract] [Full Text] [Related]

  • 14. Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli.
    Zietkiewicz S, Slusarz MJ, Slusarz R, Liberek K, Rodziewicz-Motowidło S.
    Biopolymers; 2010 Jan 10; 93(1):47-60. PubMed ID: 19714768
    [Abstract] [Full Text] [Related]

  • 15. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system.
    Klostermeier D, Seidel R, Reinstein J.
    J Mol Biol; 1999 Apr 02; 287(3):511-25. PubMed ID: 10092456
    [Abstract] [Full Text] [Related]

  • 16. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV, Patchen B, Peterson KM, Witt SN.
    Biochemistry; 2003 May 20; 42(19):5867-76. PubMed ID: 12741845
    [Abstract] [Full Text] [Related]

  • 17. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation.
    Haslberger T, Bukau B, Mogk A.
    Biochem Cell Biol; 2010 Feb 20; 88(1):63-75. PubMed ID: 20130680
    [Abstract] [Full Text] [Related]

  • 18. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ.
    Biochemistry; 2003 May 06; 42(17):4926-36. PubMed ID: 12718534
    [Abstract] [Full Text] [Related]

  • 19. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T, Oohata Y, Nakamura T, Watanabe YH.
    J Biol Chem; 2015 Apr 10; 290(15):9789-800. PubMed ID: 25713084
    [Abstract] [Full Text] [Related]

  • 20. Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system.
    Nakamura A, Takumi K, Miki K.
    J Mol Biol; 2010 Mar 05; 396(4):1000-11. PubMed ID: 20036249
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.