These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interaction between propranolol and electron donors in altering the calcium ion-dependent potassium ion-permeability of the human red blood cell membrane. Skulskii IA, Manninen V. Acta Physiol Scand; 1984 Mar; 120(3):329-32. PubMed ID: 6331072 [Abstract] [Full Text] [Related]
3. Cation specificity of propranolol-induced changes in RBC membrane permeability: comparative effects in human, dog and cat erythrocytes. Müller-Soyano A, Glader BE. J Cell Physiol; 1977 May; 91(2):317-21. PubMed ID: 558987 [Abstract] [Full Text] [Related]
5. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III. Belyaeva EA, Glazunov VV, Korotkov SM. Chem Biol Interact; 2004 Dec 07; 150(3):253-70. PubMed ID: 15560892 [Abstract] [Full Text] [Related]
7. Endothelin-1 and vasopressin activate Ca(2+)-permeable non-selective cation channels in aortic smooth muscle cells: mechanism of receptor-mediated Ca2+ influx. Nakajima T, Hazama H, Hamada E, Wu SN, Igarashi K, Yamashita T, Seyama Y, Omata M, Kurachi Y. J Mol Cell Cardiol; 1996 Apr 07; 28(4):707-22. PubMed ID: 8732499 [Abstract] [Full Text] [Related]
8. The Ca2+-sensitive K+ transport in inside-out red cell membrane vesicles. Szebeni J. Acta Biochim Biophys Acad Sci Hung; 1981 Apr 07; 16(1-2):77-82. PubMed ID: 6278807 [Abstract] [Full Text] [Related]
9. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. Zeidler RB, Kim HD. J Cell Physiol; 1979 Sep 07; 100(3):551-61. PubMed ID: 39943 [Abstract] [Full Text] [Related]
10. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium]. Orlov SN, Pokudin NI, Kotelevtsev IuV. Biokhimiia; 1987 Aug 07; 52(8):1373-86. PubMed ID: 2444274 [Abstract] [Full Text] [Related]
11. In vitro method for measurement of free radical effects: effect of PMS (phenazine methosulphate) on red blood cell membrane. Wittmann I, Past T, Tapsonyi Z, Horváth T, Jávor T. Acta Physiol Hung; 1989 Aug 07; 73(2-3):341-5. PubMed ID: 2596321 [Abstract] [Full Text] [Related]
12. Is Ca2+ effect on passive K+ transport mediated by spectrin--dependent ATPase? Mircevová L, Pick P, Kodícek M, Rehácková H. Biomed Biochim Acta; 1987 Aug 07; 46(2-3):S41-5. PubMed ID: 2439076 [Abstract] [Full Text] [Related]
13. Modulation of Ca2+-mediated K+-gating of erythrocyte ghosts by external Ca-EGTA. Benjamin AM, Quastel DM. J Cell Physiol; 1984 Dec 07; 121(3):508-16. PubMed ID: 6438119 [Abstract] [Full Text] [Related]
14. Calcium-dependent increase in the potassium permeability of human red blood cells by pentachlorophenol and 2,4,6-trinitrophenol. Kaila K, Juusela A. Med Biol; 1982 Oct 07; 60(5):260-6. PubMed ID: 6296557 [Abstract] [Full Text] [Related]
15. Mechanisms of delta-hexachlorocyclohexane toxicity: II. Evidence for Ca2+-dependent K+-selective ionophore activity. Buck ED, Pessah IN. J Pharmacol Exp Ther; 1999 Apr 07; 289(1):486-93. PubMed ID: 10087041 [Abstract] [Full Text] [Related]
16. [Participation of calmodulin in the regulation of plasma membrane electric potential by intracellular calcium]. Orlov SN, Kravtsov GM. Biokhimiia; 1983 Sep 07; 48(9):1447-55. PubMed ID: 6414535 [Abstract] [Full Text] [Related]
17. [Role of membrane-bound calcium in changes in the ATPase activity, permeability and structural state of human erythrocyte membranes]. Orlov SN, Shevchenko AS, Postnov IuV. Biull Eksp Biol Med; 1978 Jun 07; 85(6):682-5. PubMed ID: 149575 [Abstract] [Full Text] [Related]
18. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma]. Babich LG, Fomin VP, Kosterin SA. Biokhimiia; 1990 Oct 07; 55(10):1890-901. PubMed ID: 2078629 [Abstract] [Full Text] [Related]