These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


450 related items for PubMed ID: 17251049

  • 1. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H, Stone T, Hu H, Harris N.
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [Abstract] [Full Text] [Related]

  • 2. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K, Liu T, Shibata K, Inoue Y, Zheng R.
    J Biomech; 2009 Dec 11; 42(16):2747-52. PubMed ID: 19748624
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. System and modelling errors in motion analysis: implications for the measurement of the elbow angle in cricket bowling.
    Elliott BC, Alderson JA, Denver ER.
    J Biomech; 2007 Dec 11; 40(12):2679-85. PubMed ID: 17307186
    [Abstract] [Full Text] [Related]

  • 5. Normal functional range of motion of upper limb joints during performance of three feeding activities.
    Safaee-Rad R, Shwedyk E, Quanbury AO, Cooper JE.
    Arch Phys Med Rehabil; 1990 Jun 11; 71(7):505-9. PubMed ID: 2350221
    [Abstract] [Full Text] [Related]

  • 6. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R, Tadano S, Natorigawa A, Todoh M, Yoshinari S.
    J Biomech; 2009 Nov 13; 42(15):2486-94. PubMed ID: 19682694
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM, Kirsch RF.
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov 13; 22(6):1138-47. PubMed ID: 24846651
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.
    Hirashima M, Kudo K, Watarai K, Ohtsuki T.
    J Neurophysiol; 2007 Jan 13; 97(1):680-91. PubMed ID: 17079349
    [Abstract] [Full Text] [Related]

  • 15. Ranges of active joint motion for the shoulder, elbow, and wrist in healthy adults.
    Aizawa J, Masuda T, Hyodo K, Jinno T, Yagishita K, Nakamaru K, Koyama T, Morita S.
    Disabil Rehabil; 2013 Aug 13; 35(16):1342-9. PubMed ID: 23826904
    [Abstract] [Full Text] [Related]

  • 16. A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package.
    Zhu R, Zhou Z.
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun 13; 12(2):295-302. PubMed ID: 15218943
    [Abstract] [Full Text] [Related]

  • 17. Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis.
    Hirashima M, Yamane K, Nakamura Y, Ohtsuki T.
    J Biomech; 2008 Sep 18; 41(13):2874-83. PubMed ID: 18678375
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Contributions of joint rotations to racquet speed in the tennis serve.
    Gordon BJ, Dapena J.
    J Sports Sci; 2006 Jan 18; 24(1):31-49. PubMed ID: 16368612
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.