These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2027 related items for PubMed ID: 17255157

  • 1. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L, Ao Q, Wang A, Gong K, Wang X, Lu G, Gong Y, Zhao N, Zhang X.
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [Abstract] [Full Text] [Related]

  • 2. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW, Shin SY, Kim HE, Lee YM, Chung CP, Lee HH, Rhyu IC.
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [Abstract] [Full Text] [Related]

  • 3. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD.
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [Abstract] [Full Text] [Related]

  • 4. Engineering craniofacial scaffolds.
    Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH.
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [Abstract] [Full Text] [Related]

  • 5. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [Abstract] [Full Text] [Related]

  • 6. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X, Liu L, Zhang Q.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [Abstract] [Full Text] [Related]

  • 7. [Preliminary study on chitosan/HAP bilayered scaffold].
    Zhang H, Wang W, Chu D, Liu Y, Guan J.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607
    [Abstract] [Full Text] [Related]

  • 8. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds.
    Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X.
    J Biomed Mater Res A; 2005 Nov 01; 75(2):275-82. PubMed ID: 16044404
    [Abstract] [Full Text] [Related]

  • 9. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH, Park IK, Kim JM, Lee JH.
    Biomaterials; 2007 Mar 01; 28(9):1664-71. PubMed ID: 17196648
    [Abstract] [Full Text] [Related]

  • 10. Fabrication and characterization of a biomimetic composite scaffold for bone defect repair.
    Nitzsche H, Lochmann A, Metz H, Hauser A, Syrowatka F, Hempel E, Müller T, Thurn-Albrecht T, Mäder K.
    J Biomed Mater Res A; 2010 Jul 01; 94(1):298-307. PubMed ID: 20186731
    [Abstract] [Full Text] [Related]

  • 11. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI, Bourban PE, Tami AE, Alini M, Eglin D.
    Acta Biomater; 2009 Nov 01; 5(9):3316-27. PubMed ID: 19442765
    [Abstract] [Full Text] [Related]

  • 12. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V, Kaplan D.
    Biomaterials; 2005 Sep 01; 26(27):5474-91. PubMed ID: 15860204
    [Abstract] [Full Text] [Related]

  • 13. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA, Grant DM, Howdle SM, Rose FR, Irvine DJ, Freeman D, Scotchford CA, Shakesheff KM.
    Biomaterials; 2005 Mar 01; 26(7):697-702. PubMed ID: 15350773
    [Abstract] [Full Text] [Related]

  • 14. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M.
    Biomaterials; 2005 Jun 01; 26(18):3919-28. PubMed ID: 15626439
    [Abstract] [Full Text] [Related]

  • 15. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA.
    Biomaterials; 2007 May 01; 28(15):2491-504. PubMed ID: 17335896
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of the zein/inorganics composite on biocompatibility and osteoblastic differentiation.
    Qu ZH, Wang HJ, Tang TT, Zhang XL, Wang JY, Dai KR.
    Acta Biomater; 2008 Sep 01; 4(5):1360-8. PubMed ID: 18439886
    [Abstract] [Full Text] [Related]

  • 17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec 01; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 18. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS.
    Biomaterials; 2006 Mar 01; 27(8):1399-409. PubMed ID: 16169074
    [Abstract] [Full Text] [Related]

  • 19. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity.
    Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JA, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ.
    Biomaterials; 2007 Jan 01; 28(1):45-54. PubMed ID: 16963118
    [Abstract] [Full Text] [Related]

  • 20. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK.
    Biomed Mater; 2011 Feb 01; 6(1):015009. PubMed ID: 21205996
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 102.