These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 17259366

  • 1. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes.
    Kim Y, Ingram LO, Shanmugam KT.
    Appl Environ Microbiol; 2007 Mar; 73(6):1766-71. PubMed ID: 17259366
    [Abstract] [Full Text] [Related]

  • 2. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production.
    Zhou S, Iverson AG, Grayburn WS.
    Biotechnol Lett; 2008 Feb; 30(2):335-42. PubMed ID: 17957344
    [Abstract] [Full Text] [Related]

  • 3. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
    Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT.
    J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572
    [Abstract] [Full Text] [Related]

  • 4. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A, Garza E, Manow R, Wang J, Gao Y, Grayburn S, Zhou S.
    BMC Syst Biol; 2016 Apr 16; 10():31. PubMed ID: 27083875
    [Abstract] [Full Text] [Related]

  • 5. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose.
    Chen K, Iverson AG, Garza EA, Grayburn WS, Zhou S.
    Biotechnol Lett; 2010 Jan 16; 32(1):87-96. PubMed ID: 19728107
    [Abstract] [Full Text] [Related]

  • 6. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
    Liu R, Liang L, Chen K, Ma J, Jiang M, Wei P, Ouyang P.
    Appl Microbiol Biotechnol; 2012 May 16; 94(4):959-68. PubMed ID: 22294432
    [Abstract] [Full Text] [Related]

  • 7. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis.
    Lawford HG, Rousseau JD.
    Appl Biochem Biotechnol; 1991 May 16; 28-29():221-36. PubMed ID: 1929364
    [Abstract] [Full Text] [Related]

  • 8. Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli.
    Munjal N, Mattam AJ, Pramanik D, Srivastava PS, Yazdani SS.
    Microb Cell Fact; 2012 Nov 04; 11():145. PubMed ID: 23122330
    [Abstract] [Full Text] [Related]

  • 9. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ, Henson MA.
    Biotechnol Bioeng; 2011 Feb 04; 108(2):376-85. PubMed ID: 20882517
    [Abstract] [Full Text] [Related]

  • 10. Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10.
    Manow R, Wang J, Wang Y, Zhao J, Garza E, Iverson A, Finan C, Grayburn S, Zhou S.
    J Ind Microbiol Biotechnol; 2012 Jul 04; 39(7):977-85. PubMed ID: 22374228
    [Abstract] [Full Text] [Related]

  • 11. Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media.
    Skorokhodova AY, Gulevich AY, Morzhakova AA, Shakulov RS, Debabov VG.
    Biotechnol Lett; 2013 Apr 04; 35(4):577-83. PubMed ID: 23208454
    [Abstract] [Full Text] [Related]

  • 12. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain.
    Martínez-Alcantar L, Díaz-Pérez AL, Campos-García J.
    World J Microbiol Biotechnol; 2019 Nov 20; 35(12):189. PubMed ID: 31748890
    [Abstract] [Full Text] [Related]

  • 13. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05.
    Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S.
    World J Microbiol Biotechnol; 2013 Jul 20; 29(7):1225-32. PubMed ID: 23435875
    [Abstract] [Full Text] [Related]

  • 14. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL, Rao CV.
    Appl Microbiol Biotechnol; 2014 Aug 20; 98(15):6897-905. PubMed ID: 24839214
    [Abstract] [Full Text] [Related]

  • 15. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M, Winkler AA, van Dijken JP, Pronk JT.
    FEMS Yeast Res; 2004 Mar 20; 4(6):655-64. PubMed ID: 15040955
    [Abstract] [Full Text] [Related]

  • 16. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK, Sedlak M, Khan A, Ho NW.
    Appl Microbiol Biotechnol; 2010 Aug 20; 87(5):1803-11. PubMed ID: 20449743
    [Abstract] [Full Text] [Related]

  • 17. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12.
    Kim Y, Ingram LO, Shanmugam KT.
    J Bacteriol; 2008 Jun 20; 190(11):3851-8. PubMed ID: 18375566
    [Abstract] [Full Text] [Related]

  • 18. Genetic engineering of Zymobacter palmae for production of ethanol from xylose.
    Yanase H, Sato D, Yamamoto K, Matsuda S, Yamamoto S, Okamoto K.
    Appl Environ Microbiol; 2007 Apr 20; 73(8):2592-9. PubMed ID: 17308178
    [Abstract] [Full Text] [Related]

  • 19. Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products.
    Zhou S, Iverson AG, Grayburn WS.
    Biotechnol Prog; 2010 Apr 20; 26(1):45-51. PubMed ID: 19862803
    [Abstract] [Full Text] [Related]

  • 20. Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10.
    Manow R, Wang C, Garza E, Zhao X, Wang J, Grayburn S, Zhou S.
    World J Microbiol Biotechnol; 2020 Mar 31; 36(4):59. PubMed ID: 32236784
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.