These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 17263255

  • 1. Molecular dynamics simulation of the size effect of carbon nanotubes on the bulk modulus of a lipid bilayer.
    Gan Y, Chen Z.
    Mol Cell Biomech; 2006 Sep; 3(3):89-94. PubMed ID: 17263255
    [Abstract] [Full Text] [Related]

  • 2. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X, Moran-Mirabal JM, Craighead HG, McEuen PL.
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [Abstract] [Full Text] [Related]

  • 3. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA, Zeineldin R, Al-Haik M.
    Langmuir; 2012 May 22; 28(20):7872-9. PubMed ID: 22545729
    [Abstract] [Full Text] [Related]

  • 4. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H.
    J Phys Chem A; 2009 Apr 23; 113(16):4780-7. PubMed ID: 19035669
    [Abstract] [Full Text] [Related]

  • 5. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH, Wang Q, Gale N, Oton CJ, Cui L, Nandhakumar IS, Zhu Z, Tang Z, Brown T, Loh WH.
    Nanotechnology; 2009 May 13; 20(19):195603. PubMed ID: 19420642
    [Abstract] [Full Text] [Related]

  • 6. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis.
    Liu J, Hopfinger AJ.
    Chem Res Toxicol; 2008 Feb 13; 21(2):459-66. PubMed ID: 18189365
    [Abstract] [Full Text] [Related]

  • 7. Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes.
    Garate JA, English NJ, MacElroy JM.
    J Chem Phys; 2009 Sep 21; 131(11):114508. PubMed ID: 19778130
    [Abstract] [Full Text] [Related]

  • 8. The structure of nanochannels formed by block copolymer solutions confined in nanotubes.
    Chen H, Ruckenstein E.
    J Chem Phys; 2009 Sep 21; 131(11):114904. PubMed ID: 19778146
    [Abstract] [Full Text] [Related]

  • 9. Can a carbon nanotube pierce through a phospholipid bilayer?
    Pogodin S, Baulin VA.
    ACS Nano; 2010 Sep 28; 4(9):5293-300. PubMed ID: 20809585
    [Abstract] [Full Text] [Related]

  • 10. Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer.
    Pogodin S, Slater NK, Baulin VA.
    ACS Nano; 2011 Feb 22; 5(2):1141-6. PubMed ID: 21207970
    [Abstract] [Full Text] [Related]

  • 11. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q, Huang L, Zhou J, Lu L, Zhang L, Lu X, Jiang S, Gubbins KE, Shen W.
    Phys Chem Chem Phys; 2008 Apr 14; 10(14):1896-906. PubMed ID: 18368182
    [Abstract] [Full Text] [Related]

  • 12. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F, Benz RW, White SH, Tobias DJ.
    J Phys Chem B; 2006 Nov 30; 110(47):24157-64. PubMed ID: 17125387
    [Abstract] [Full Text] [Related]

  • 13. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C, Suenaga K, Iijima S.
    ACS Nano; 2008 Jun 30; 2(6):1275-9. PubMed ID: 19206345
    [Abstract] [Full Text] [Related]

  • 14. Membrane penetration and curvature induced by single-walled carbon nanotubes: the effect of diameter, length, and concentration.
    Lee H.
    Phys Chem Chem Phys; 2013 Oct 14; 15(38):16334-40. PubMed ID: 23999984
    [Abstract] [Full Text] [Related]

  • 15. Improved dissipative particle dynamics simulations of lipid bilayers.
    Gao L, Shillcock J, Lipowsky R.
    J Chem Phys; 2007 Jan 07; 126(1):015101. PubMed ID: 17212519
    [Abstract] [Full Text] [Related]

  • 16. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces.
    Shen JW, Wu T, Wang Q, Kang Y.
    Biomaterials; 2008 Oct 07; 29(28):3847-55. PubMed ID: 18617259
    [Abstract] [Full Text] [Related]

  • 17. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z, Buehler MJ.
    Nanotechnology; 2009 May 06; 20(18):185701. PubMed ID: 19420624
    [Abstract] [Full Text] [Related]

  • 18. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.
    Raczyński P, Górny K, Dawid A, Gburski Z.
    Arch Biochem Biophys; 2014 Jul 15; 554():6-10. PubMed ID: 24796224
    [Abstract] [Full Text] [Related]

  • 19. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y, Li D, Ji B, Shi X, Gao H.
    J Mol Graph Model; 2010 Sep 15; 29(2):171-7. PubMed ID: 20580296
    [Abstract] [Full Text] [Related]

  • 20. Capillary effect of multi-walled carbon nanotubes suspension in composite processing.
    Fan Z, Advani SG.
    J Nanosci Nanotechnol; 2008 Apr 15; 8(4):1669-78. PubMed ID: 18572564
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.